Size controlling preparation, adsorption and catalytic properties of silica microspheres

Tianyu Guo , Jianping Du , Shuang Wang , Jinting Wu , Jinping Li

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 843 -847.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 843 -847. DOI: 10.1007/s40242-016-5492-0
Article

Size controlling preparation, adsorption and catalytic properties of silica microspheres

Author information +
History +
PDF

Abstract

The size-controlled silica microspheres were prepared by a facile method and the growth mechanism was simply studied. The as-prepared samples were characterized by scanning electron microscopy and transmission electron microscopy. The CO2 adsorption behaviors and methane catalytic oxidation were also measured. The results show that the as-prepared silica is perfect sphere, and the particle size can be controlled by adding tartaric acid. Spherical silica and sphere/tube(rod)-shaped silica were obtained by adjusting reaction time. Silica microspheres with uniform size exhibit high capacity of CO2 adsorption, while others with wide size-distribution exhibit excellent catalytic performance, suggesting it is an effective method by regulating size to utilize its advantages selectively. Therefore, it will be an ideal strategy to develop the efficient multifunctional materials by a facile route.

Keywords

Silica / Size controlling / Size dependence / Adsorption / Catalysis

Cite this article

Download citation ▾
Tianyu Guo, Jianping Du, Shuang Wang, Jinting Wu, Jinping Li. Size controlling preparation, adsorption and catalytic properties of silica microspheres. Chemical Research in Chinese Universities, 2016, 32(5): 843-847 DOI:10.1007/s40242-016-5492-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chaouachi A., Chtourou R., M’nif A., Hamzaoui A. H. Mater. Lett., 2014, 116: 420.

[2]

Gomes E. C. C., de Sousa A. F., Vasconcelos P. H. M., Melo D. Q., Diógenes I. C. N., de Sousa E. H. S., do Nascimento R. F., San Gil R. A. S., Longhinotti E. Chem. Eng. J., 2013, 214: 27.

[3]

Wang H. N., Rong X., Huang W. Q., Han L., Wang T., Chen R. Y. Chem. J. Chinese Universities, 2014, 35(12): 2516.

[4]

Wang X. P., Li X., Ito A., Sogo Y., Ohno T. Acta Biomater., 2013, 9(7): 7480.

[5]

Fu Y. Q., Li L. H., Wang H., Jiang Y., Liu H. J., Cui X. Y., Wang P. W., Lu C. L. Chem. Res. Chinese Universities, 2015, 31(6): 976.

[6]

Okada S., Kamegawa T., Mori K., Yamashita H. Catal. Today, 2012, 185(1): 109.

[7]

He H. Y., Li W. L., Xie Z. G., Jing X. B., Huang Y. B. Chem. Res. Chinese Universities, 2014, 30(2): 310.

[8]

Fang C., Chen Y. J., Mao H., Zhao J., Jiang Y. F., Zhao S. L., Ma J. Chem. J. Chinese Universities, 2015, 36(1): 124.

[9]

Alabi T. R., Yuan D. J., Bucknall D., Das S. ACS Appl. Mater. Interfaces, 2013, 5(18): 8923.

[10]

Fujia M., Shin T., Watanabe H., Takei T. Adv. Powder Technol., 2012, 23(5): 562.

[11]

Yang X., Liao S. J., Zeng J. H., Liang Z. X. Appl. Surf. Sci., 2011, 257(9): 4472.

[12]

Ma Z. J., Pan X. Z., Hu Z. L., Dong G. P., Qiu J. R. J. Non-Cryst. Solid, 2014, 383: 75.

[13]

Cheow W. S., Li S., Hadinoto K. Chem. Eng. Res. Des., 2010, 88(5/6): 673.

[14]

Horikoshi S., Akao Y., Ogur T., Sakai H., Abe M., Serpone N. Colloid Surf. A. Physicoche. Eng. Asp., 2010, 372(1-3): 55.

[15]

Pei L. Z. Mater. Charact., 2008, 59(5): 656.

[16]

Li Y. J., Zou B., Wang X. F., Wang Z. C. Particuology, 2013, 11(6): 723.

[17]

Ahmed A., Abdelmagid W., Ritchie H., Myers P., Zhang H. F. J. Chromatogr. A, 2012, 1270: 194.

[18]

Izutsu H., Mizukami F., Nair P. K., Kiyozumi Y., Maeda K. J. Mater. Chem., 1997, 7: 767.

[19]

Izutsu H., Mizukami F., Kiyozumi Y., Maeda K. J. Am. Ceram. Soc., 1997, 80(10): 2581.

[20]

Watabe T. S., Yogo K. Sep. Purif. Technol., 2013, 120: 20.

[21]

Xu X., Song C., Andresen J. M., Miller B. G., Scaroni A. W. Micropor. Mesopor. Mater., 2003, 62(1/2): 29.

[22]

Franchi R. S., Harlick P. J. E., Sayari A. Ind. Eng. Chem. Res., 2005, 44(21): 8007.

[23]

Feng Y. F., Zhou H., Liu G. H., Qiao J., Wang J. H., Liu H. Y., Yang L. Z. Bioresource Technol., 2012, 125: 138.

[24]

Jiang B. P., Yin H. B., Jiang T. S., Jiang Y. H., Feng H., Chen K. M., Zhou W. P., Wada Y. Mater. Chem. Phys., 2006, 98(2/3): 231.

[25]

Singh L. P., Agarwal S. K., Bhattacharyya S. K., Sharma U., Ahalawat S. Nanomater. Nanotechnol., 2011, 1(1): 44.

[26]

Bin L., Wen H. M., Zhou W., Chen B. L. J. Phys. Chem. Lett., 2014, 5: 3468.

[27]

Rahman I. A., Vejayakumaran P., Sipaut C. S., Ismail J., Chee C. K. Mater. Chem. Phys., 2009, 114: 328.

[28]

Amairia C., Fessi S., Ghorbel A., Rîves A. J. Mol. Catal. A: Chem., 2010, 332(1/2): 25.

[29]

Cao Y. D., Ran R., Wu X. D., Zhao B. H., Wan J., Weng D. Appl. Catal. A: Gen., 2013, 457: 52.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/