Instability origin and improvement scheme of facial Alq3 for blue OLED application

Jiaren Du , Moran Wang , Nianke Chen , Shengyi Xie , Hongmei Yu , Qi Wu

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 423 -427.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 423 -427. DOI: 10.1007/s40242-016-5485-z
Article

Instability origin and improvement scheme of facial Alq3 for blue OLED application

Author information +
History +
PDF

Abstract

Degradation phenomenon and poor stability of tris(8-hydroxyquinoline) aluminum(III)(Alq3)-based organic light-emitting diodes(OLEDs) have attracted much attention. In this paper, we discussed the origin of instability of the facial Alq3-based blue luminescent OLEDs with the help of first-principles calculation. The results show that environmental humidity seriously affects the luminescence stability of Alq3-based OLEDs. H2O molecules in environment can be firmly bound to the oxygen atoms of the facial Alq3, which then act as starting points for further degradation of Alq3. Moreover, the interactions between facial Alq3 and different cathode metal layers were investigated to explain the experiment phenomenon. A design guideline for diminishing the strong attraction from oxygen atoms can be proposed to protect Alq3 and improve the stability of materials applied in OLEDs.

Keywords

Organic light-emitting diode(OLED) / Facial tris(8-hydroxyquinoline) aluminum(III)(Alq3) / First-principle calculation / Degradation mechanism

Cite this article

Download citation ▾
Jiaren Du, Moran Wang, Nianke Chen, Shengyi Xie, Hongmei Yu, Qi Wu. Instability origin and improvement scheme of facial Alq3 for blue OLED application. Chemical Research in Chinese Universities, 2016, 32(3): 423-427 DOI:10.1007/s40242-016-5485-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tang C. W., Van Slyke S. A., Chen C. H. J. Appl. Phys., 1989, 65(9): 3610.

[2]

Kido J., Iizumi Y. Appl. Phys. Lett., 1998, 73: 2721.

[3]

Shen Z., Burrows P. E., Bulović V., Forrest S. R., Thompson M. E. Science, 1997, 276(5321): 2009.

[4]

Tang C. W., Van Slyke S. A. Appl. Phys. Lett., 1987, 51(12): 913.

[5]

Yu J., Yin Y. M., Xie W. F., Zhang L. T. Chem. Res. Chinese Universities, 2015, 31(4): 569.

[6]

Thangaraju K., Kumar J., Amaladass P., Mohanakrishnan A. K., Narayanan V. Appl. Phys. Lett., 2006, 89(8): 082106.

[7]

Lee J., Slootsky M., Lee K., Zhang Y., Forrest S. R. Light: Sci. Appl., 2014, 3(6): e181.

[8]

Fröbel M., Schwab T., Kliem M., Hofmann S., Leo K., Gather M. C. Light: Sci. Appl., 2015, 4(2): e247.

[9]

Li X., Budai J. D., Liu F., Howe J. Y., Zhang J., Wang X. J., Gu Z., Sun C., Meltzer R. S., Pan Z. Light: Sci. Appl., 2013, 2(1): e50.

[10]

Xiang C., Koo W., So F., Sasabe H., Kido J. Light-Sci. Appl., 2013, 2(6): e74.

[11]

So F., Kondakov D. Adv. Mater., 2010, 22(34): 3762.

[12]

Pulli T., Dönsberg T., Poikonen T., Manoocheri F., Kärhä P., Ikonen E. Light: Sci. Appl., 2015, 4(9): e332.

[13]

Zhang D., Duan L., Zhang Y., Cai M., Zhang D., Qiu Y. Light: Sci. Appl., 2015, 4(1): e232.

[14]

Aziz H., Popovic Z. D., Hu N. X., Hor A. M., Xu G. Science, 1999, 283(5409): 1900.

[15]

Cölle M., Gmeiner J., Milius W., Hillebrecht H., Brütting W. Adv. Funct. Mater., 2003, 13(2): 108.

[16]

Aziz H., Popovic Z. D. Chem. Mater., 2004, 16(23): 4522.

[17]

Oh J. H., Yang S. J., Do Y. R. Light: Sci. Appl., 2014, 3(2): e141.

[18]

Curioni A., Andreoni W. IBM J. Res. Dev., 2001, 45(1): 101.

[19]

Kushto G. P., Iizumi Y., Kido J., Kafafi Z. H. J. Phys. Chem. A, 2000, 104(16): 3670.

[20]

Curioni A., Boero M., Andreoni W. Chem. Phys. Lett., 1998, 294(4): 263.

[21]

Fukushima T., Kaji H. Org. Electron., 2012, 13(12): 2985.

[22]

Cölle M., Dinnebier R. E., Brütting W. Chem. Commun., 2002, 23: 2908.

[23]

Cölle M., Brütting W. Phys. Status Solidi A, 2004, 201(6): 1095.

[24]

Xie M., Chen J., Wang J., Zhang H. X. Chem. Res. Chinese Universities, 2015, 31(5): 830.

[25]

Zou L. Y., Guan S., Li L. J., Zhao L. Chem. Res. Chinese Universities, 2015, 31(5): 801.

[26]

Kresse G., Hafner J. Phys. Rev. B, 1993, 47(1): 558.

[27]

Li X. B., Xie S. Y., Zheng H., Tian W. Q., Sun H. B. Nanoscale, 2015, 7(45): 18863.

[28]

Zhu M., Xia M. J., Rao F., Li X. B., Wu L. C., Ji X. L., S. L., Song Z. T., Feng S. L., Sun H. B., Zhang S. B. Nat. Commun., 2014, 5: 4086.

[29]

Li X. B., Limpijumnong S., Tian W. Q., Sun H. B., Zhang S. B. Phys. Rev. B, 2008, 78(11): 113203.

[30]

Li X. B., Liu X. Q., Liu X., Han D., Zhang Z., Han X. D., Sun H. B., Zhang S. B. Phys. Rev. Lett., 2011, 107(1): 015501.

[31]

Li X. B., Liu X. Q., Han X. D., Zhang S. B. Phys. Status Solidi B, 2012, 249(10): 1861.

[32]

Perdew J. P., Burke K., Ernzerhof M. Phys. Rev. Lett., 1996, 77(18): 3865.

[33]

Elmér R., Berg M., Carlén L., Jakobsson B., Norén B., Oskarsson A., Ericsson G., Julien J., Thorsteinsen T. F., Guttormsen M. Phys. Rev. Lett., 1996, 77(24): 4884.

[34]

Grimme S. J. Comput. Chem., 2006, 27(15): 1787.

[35]

Grimme S. Wiley. Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(2): 211.

[36]

Xie S. Y., Li X. B., Tian W. Q., Chen N. K., Zhang X. L., Wang Y. L., Zhang S. B., Sun H. B. Phys. Rev. B, 2014, 90(3): 035447.

[37]

Higginson K. A., Zhang X. M., Papadimitrakopoulos F. Chem. Mater., 1998, 10(4): 1017.

[38]

Knox J. E., Halls M. D., Hratchian H. P., Schlegel H. B. Phys. Chem. Chem. Phys., 2006, 8(12): 1371.

[39]

Papadimitrakopoulos F., Zhang X. M., Thomsen D., Higginson K. Chem. Mater., 1996, 8(7): 1363.

[40]

Schaer M., Nüesch F., Berner D., Leo W., Zuppiroli L. Adv. Funct. Mater., 2001, 11(2): 116.

[41]

Curioni A., Andreoni W. Synthetic Met., 2000, 111: 299.

[42]

Zugang L., Pinto J. Chem. Res. Chinese Universities, 2002, 18(2): 121.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/