Hybrid hydrogels assembled from phenylalanine derivatives and agarose with enhanced mechanical strength

Ye Yu , Yuxiang Wang , Chuanliang Feng

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 872 -876.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 872 -876. DOI: 10.1007/s40242-016-5474-2
Article

Hybrid hydrogels assembled from phenylalanine derivatives and agarose with enhanced mechanical strength

Author information +
History +
PDF

Abstract

A roadblock for supramolecular hydrogels is their poor mechanical properties. Herein, to enhance the mechanical strength of supramolecular hydrogels, agarose(AG) was incorporated into the low molecular weight hydrogelator( G1). The results of scanning electron microscopy(SEM), circular dichroism(CD) and Fourier transform infrared spectroscopy(FTIR) prove that G1 gelators can self-assemble into cross-linked network together with AG. The mechanical properties of the gels are characterized by a rotary rheometer and the mechanical properties of the hybrid hydrogels(Hgel) can be significantly improved and may be further tuned by changing the ratio of the two components. For example, the elastic modulus of Hgel II[m(G1):m(AG)=7:3] is about 2 times higher than that of G1 hydrogel. The results demonstrate that the mechanical property of hybrid supramolecular hydrogels can be adjusted through the formation of a cross-linked network.

Keywords

Supramolecular gelator / Hybrid hydrogel / Mechanical strength / Self-assembly

Cite this article

Download citation ▾
Ye Yu, Yuxiang Wang, Chuanliang Feng. Hybrid hydrogels assembled from phenylalanine derivatives and agarose with enhanced mechanical strength. Chemical Research in Chinese Universities, 2016, 32(5): 872-876 DOI:10.1007/s40242-016-5474-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Feng C. L., Dou X. Q., Zhang D., Schönherr H. Macromol. Rapid Commun., 2012, 33(18): 1535.

[2]

Zhou J., Du X. W., Gao Y., Shi J. F., Xu B. J. Am. Chem. Soc., 2014, 136(8): 2970.

[3]

Griffith A., Bandy T. J., Light M., Stulz E. Chem. Commun., 2013, 49(7): 731.

[4]

Guo K., Zhang H., Sun J. C., Yuan S. L., Liu C. B. Chem. J. Chinese Univisities, 2015, 36(11): 2171.

[5]

Liang G. L., Yang Z. M., Zhang R. J., Li L. H., Fan Y. J., Kuang Y., Gao Y., Wang T., Lu W. W., Xu B. Langmuir, 2009, 25(15): 8419.

[6]

Li J., Li X., Ni X. P., Wang X., Li H. Z., Leong K. W. Biomaterials, 2006, 27(22): 4132.

[7]

Zhou Y., Cui H. J., Shu C., Ling Y., Wang R., Li H. M., Chen Y. D., Lu T., Zhong W. Y. Chem. Commun., 2015, 51(83): 15294.

[8]

Shao Y., Fu J. P. Adv. Mater., 2014, 26(10): 1494.

[9]

Suga T., Osada S., Narita T., Oishi Y., Kodama H. Mater. Sci. Eng., C, 2015, 47: 345.

[10]

Cheng C., Tang M. C., Wu C. S., Simon T., Ko F. H. ACS Appl. Mater. Interfaces, 2015, 7(34): 19306.

[11]

Steed J. W. Chem. Commun., 2011, 47(5): 1379.

[12]

Das D., Dasgupta A., Roy S., Mitra R. N., Debnath S., Das P. K. Chem. Eur. J., 2006, 12(19): 5068.

[13]

Appel E. A., Barrio J. D., Loh X. J., Scherman O. A. Chem. Soc. Rev., 2012, 41(18): 6195.

[14]

Lee K. Y., Mooney D. J. Chem. Rev., 2001, 101(7): 1869.

[15]

Cui L., Jia J. F., Xiong Z. H., Zhang C. J., Ye Z. T., Zhu P. Acta Polym. Sin., 2014, 43(3): 361.

[16]

Tse J. R., Engler A. J. PLoS One, 2011, 6(1): 121.

[17]

Engler A. J., Sen S., Sweeney H. L., Discher D. E. Cell, 2006, 126(1): 677.

[18]

Liu S. L., Zhou Y., Chen F. H., Zhu S. J., Su F., Li S. M. Acta Chim. Sinica, 2015, 73(1): 47.

[19]

Bhattacharya S., Srivastava A., Pal A. Angew. Chem., 2006, 118(18): 3000.

[20]

Srinivasan S., Babu S. S., Praveen V., Ajayaghosh A. Angew. Chem. Int. Ed., 2008, 47(31): 5746.

[21]

Chen L., Revel S., Morris K., Spiller D. G., Serpell L. C., Adams D. J. Chem. Commun., 2010, 46(36): 6738.

[22]

Cornwell D. J., Smith D. K. Mater. Horiz., 2015, 2(3): 279.

[23]

Cornwell D. J., Okesola B. O., Smith D. K. Soft Matter, 2013, 9(36): 8730.

[24]

Way A. E., Korpusik A. B., Dorsey T. B., Buerkle L. E., Recum H. V. A., Rowan S. J. Macromolecules, 2014, 47(5): 1810.

[25]

Huang R. L., Qi W., Feng L. B., Su R. X., He Z. M. Soft Matter, 2011, 7(13): 6222.

[26]

Wang J. Y., Wang H. M., Song Z. J., Kong D. L., Chen X. M., Yang Z. M. Colloids Surf., B, 2010, 80(2): 155.

[27]

Wang J. Y., Wang Z. H., Gao J., Wang L., Yang Z. Y., Kong D. L., Yang Z. M. J. Mater. Chem., 2009, 19(42): 7892.

[28]

Li P., Dou X. Q., Feng C. L., Zhang D. Soft Matter, 2013, 9(14): 3750.

[29]

Kuang H. H., He H. Y., Zhang Z. Y., Qi Y. X., Xie Z. G., Jing X. B., Huang Y. B. J. Mater. Chem. B, 2014, 2(2): 659.

[30]

Lopes C. M. A., Felisberti M. I. Biomaterials, 2003, 24(7): 1279.

[31]

Santin M., Huang S. J., Iannace S., Ambrosio L., Nicolais L., Peluso G. Biomaterials, 1996, 17(15): 1459.

[32]

Sharma K., Kumar V., Kaith B. S., Som S., Kumar V., Pandey A., Kalia S., Swart H. C. Ind. Eng. Chem. Res., 2015, 54(7): 1982.

[33]

Liu X. J., Zhang Y. M., Li X. S. Chinese J. Polym. Sci., 2015, 33(12): 1741.

[34]

Nuhn H., Klok H. A. Biomacromolecules, 2008, 9(10): 2755.

[35]

Ma M. L., Kuang Y., Gao Y., Zhang Y., Gao P., Xu B. J. Am. Chem. Soc., 2010, 132(8): 2719.

[36]

Dou X. Q., Li P., Zhang D., Feng C. L. Soft Matter, 2012, 8(11): 3231.

[37]

Meena R., Siddhanta A. K., Prasad K., Ramavat B. K., Eswaran K., Thiruppathi S., Ganesan M., Mantri V. A., Rao P. V. S. Carbohydr. Polym., 2007, 69(1): 179.

[38]

Gasperini L., Mano J. F., Reis R. L. J. R. Soc. Interface, 2014, 11: 0817.

[39]

Zhao W., Jin X., Cong Y., Liu Y. J., Fu J. J. Chem. Technol. Biotechnol., 2013, 88(3): 327.

[40]

Varoni E., Tschon M., Palazzo B., Nitti P., Martini L., Rimondini L. Connect Tissue Res., 2012, 53(6): 548.

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/