High-pressure, high-temperature synthesis and properties of the monoclinic phase of Y2O3

Qian Zhang , Xiang Wu , Sergey V. Ovsyannikov , Juncai Dong , Shan Qin , Leonid S. Dubrovinsky , Dongliang Chen

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (4) : 545 -548.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (4) : 545 -548. DOI: 10.1007/s40242-016-5469-z
Article

High-pressure, high-temperature synthesis and properties of the monoclinic phase of Y2O3

Author information +
History +
PDF

Abstract

The monoclinic phase of Y2O3(B-RES) has been synthesized using a Kawai-type multi-anvil apparatus at 20 GPa and 1800 °C. Samples of the cubic Y2O3(C-RES) and monoclinic Y2O3 phases were characterized by synchrotron radiation X-ray diffraction, X-ray absorption near edge structure and Raman spectroscopy. Crystal structures of the cubic and monoclinic phases have been examined using Rietveld refinement of the X-ray diffraction data. The cubic-to-monoclinic transition of Y2O3 was reconstructive and irreversible. The X-ray diffraction results were further confirmed by simulation of the X-ray absorption spectra.

Keywords

Y2O3 / High pressure / Multi-anvil synthesis

Cite this article

Download citation ▾
Qian Zhang, Xiang Wu, Sergey V. Ovsyannikov, Juncai Dong, Shan Qin, Leonid S. Dubrovinsky, Dongliang Chen. High-pressure, high-temperature synthesis and properties of the monoclinic phase of Y2O3. Chemical Research in Chinese Universities, 2016, 32(4): 545-548 DOI:10.1007/s40242-016-5469-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zinkevich M. Prog. Mater. Sci., 2007, 52(4): 597.

[2]

Atou T., Kusaba K., Fukuoka K., Kikuchi M., Syono Y. J. Solid State Chem., 1990, 89(2): 378.

[3]

Husson E., Proust C., Gillet P., Itie J. Mater. Res. Bull., 1999, 34(12/13): 2085.

[4]

Halevy I., Carmon R., Winterrose M. L., Yeheskel O., Tiferet E., Ghose S. J. Phys.: Conf. Ser., 2010, 215(1): 012003.

[5]

Bose P. P., Gupta M. K., Mittal R., Rols S., Achary S. N., Tyagi A. K., Chaplot S. L. Phys. Rev. B, 2011, 84(9): 094301.

[6]

Wang L., Pan Y., Ding Y., Yang W., Mao W. L., Sinogeikin S. V., Meng Y., Shen G., Mao H. Appl. Phys. Lett., 2009, 94(6): 061921.

[7]

Wang L., Yang W., Ding Y., Ren Y., Xiao S., Liu B., Sinogeikin S. V., Meng Y., Gosztola D. J., Shen G., Hemley R. J., Mao W. L., Mao H. K. Phys. Rev. Lett., 2010, 105(9): 095701.

[8]

Yusa H., Tsuchiya T., Sata N., Ohishi Y. Inorg. Chem., 2010, 49(10): 4478.

[9]

Umemoto K., Wentzcovitch R. M. Phys. Chem. Miner., 2011, 38(5): 387.

[10]

Akdoğan E. K., Şavklιyιldιz İ., Berke B., Zhong Z., Wang L., Weidner D., Croft M. C., Tsakalakos T. J. Appl. Phys., 2012, 111(5): 053506.

[11]

Zhang Y., Jiang D., He Z., Yu Y., Zhang H., Jiang Z. Chem. Res. Chinese Universities, 2014, 30(1): 176.

[12]

Liu M., Hu L., Xu P., Zhao K., Zong L., Yu R., Chen J., Xing X. Chem. Res. Chinese Universities, 2015, 31(3): 342.

[13]

Ovsyannikov S. V., Wu X., Shchennikov V. V., Karkin A. E., Dubrovinskaia N., Garbarino G., Dubrovinsky L. J. Phys.: Condens. Matter, 2010, 22(37): 375402.

[14]

Nishio-Hamane D., Katagiri M., Niwa K., Sano-Furukawa A., Okada T., Yagi T. High Pressure Res., 2009, 29(3): 379.

[15]

Frost D. J., Poe B.T. T., nnes R.G., Liebske C., Duba A., Rubie D. C. Phys. Earth Planet. Inter., 2004, 143: 507.

[16]

Toby B. H. J. Appl. Cryst., 2001, 34: 210.

[17]

Wu B., Zinkevich M., Aldinger F., Wen D., Chen L. J. Solid State Chem., 2007, 180(11): 3280.

[18]

Bunau O., Joly Y. J. Phys.: Condens. Matter., 2009, 21(34): 345501.

[19]

Ubaldini A., Carnasciali M. M. J. Alloys Compd., 2008, 454(1/2): 374.

[20]

Repelin Y., Proust C., Husson E., Beny J. M. J. Solid State Chem., 1995, 118(1): 163.

[21]

Lin C. M., Wu K. T., Hung T. L., Sheu H. S., Tsai M. H., Lee J. F., Lee J. J. Solid State Commun., 2010, 150(33/34): 1564.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/