Preparation of large-area controllable patterned silver nanocrystals for high sensitive and stable surface-enhanced Raman spectroscopy

Weiwei Xu , Toshihiro Okamoto , Aiwu Li , Jiping Wang , Masanobu Haraguchi

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 428 -432.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 428 -432. DOI: 10.1007/s40242-016-5464-4
Article

Preparation of large-area controllable patterned silver nanocrystals for high sensitive and stable surface-enhanced Raman spectroscopy

Author information +
History +
PDF

Abstract

A novel and facile method for fabricating large-area patterned silver nanocrystals was introduced and the investigation on the high sensitive and stable surface-enhanced Raman spectroscopy(SERS) of the nanocrystals was carried out. Nanostructured silicon substrate was processed by laser interference and used as a template for growing silver nanocrystals via galvanic battery reaction method. The substrate with large area for violent chemical reaction was tailored into a nanocell array. The limited reaction area hindered the growth of silver nanocrystals and made their size uniform and controllable. The size and gaps of the nanocrystals could be controlled by template period and ratio, which were easily reproduced by laser interference. Taking 10–8 to 10–11 mol/L Rh6G for example, the optimized silver arrays exhibited great potential for ultrasensitive molecular sensing in terms of its high SERS enhancement ability, favorable stability, and excellent reproducibility.

Keywords

Surface-enhanced Raman spectroscopy / Laser interference / Silver nanocrystal / Galvanic battery reaction

Cite this article

Download citation ▾
Weiwei Xu, Toshihiro Okamoto, Aiwu Li, Jiping Wang, Masanobu Haraguchi. Preparation of large-area controllable patterned silver nanocrystals for high sensitive and stable surface-enhanced Raman spectroscopy. Chemical Research in Chinese Universities, 2016, 32(3): 428-432 DOI:10.1007/s40242-016-5464-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li J. F., Huang Y. F., Ding Y., Yang Z. L., Li S. B., Zhou X. S., Fan F. R., Zhang W., Zhou Z. Y., Wu D. Y., Ren B., Wang Z. L., Tian Z. Q. Nature, 2010, 464(7287): 392.

[2]

Li N., Tittl A., Yue S., Giessen H., Song C., Ding B., Liu N. Light Sci. Appl., 2014, 3: e226.

[3]

Bhuvana T., Kulkarni G. U. Small, 2008, 4(5): 670.

[4]

He Y., Fan C., Lee S. T. Nano Today, 2010, 5(4): 282.

[5]

Qiu T., Wu X. L., Shen J. C., Peter C. T. H., Paul K. C., 2006, 17(23), 5769

[6]

Fang C., Agarwal A., Widjaja E., Garland M. V., Wong S. M., Linn L., Khalid N. M., Salim S. M., Balasubramanian N. Chem. Mater., 2009, 21(15): 3542.

[7]

Svedendahl M., Verre R., Kall M. Light Sci. Appl., 2014, 3: e220.

[8]

Jeon H. C., Heo C. J., Lee S. Y., Yang S. M. Adv. Funct. Mater., 2012, 22(20): 4268.

[9]

Jiang Z. Y., Jiang X. X., Su S., Wei X. P., Lee S. T., He Y. Appl. Phys. Lett., 2012, 100(20): 203104.

[10]

Liu Y. J., Zhang Z. Y., Zhao Q., Zhao Y. P. Appl. Phys. Lett., 2008, 93(17): 173106.

[11]

Zenidaka A., Honda T., Terakawa M. Appl. Phys. A, 2011, 105(2): 393.

[12]

Zhu S., Fan C., Wang J., He J., Liang E. Appl. Phys. A, 2014, 117(3): 1075.

[13]

Schedin F., Lidorikis E., Lombardo A., Kravets V. G., Geim A. K., Grigorenko A. N., Novoselov K. S., Ferrari A. C. ACS Nano, 2010, 4(10): 5617.

[14]

Motohashi M., Hayazawa N., Tarun A., Kawata S. J. Appl. Phys., 2008, 103(3): 034309.

[15]

Blum O., Shaked N. T. Light Sci. Appl., 2015, 4: e322.

[16]

Luo L. B., Chen L. M., Zhang M. L., He Z. B., Zhang W. F., Yuan G. D., Zhang W. J., Lee S. T. J. Phy. Chem. C, 2009, 113(21): 9191.

[17]

Chen Y., Fang Y. Spectrochim. Acta A, 2008, 69(3): 733.

[18]

Upender G., Sathyavathi R., Raju B., Bansal C., Narayana Rao D. J. Mol. Struct., 2012, 1012: 56.

[19]

Xia T., Luo H., Wang S., Liu J., Yu G., Wang R. CrystEngComm., 2015, 17(22): 4200.

[20]

Shao Q., Que R., Cheng L., Shao M. RSC Adv., 2012, 2(5): 1762.

[21]

Shao Q., Que R., Shao M., Cheng L., Lee S. T. Adv. Funct. Mater., 2012, 22(10): 2067.

[22]

Yang Y., Meng G. J. Appl. Phys., 2010, 107(4): 044315.

[23]

Yin H. J., Chen Z. Y., Zhao Y. M., M. Y., Shi C. A., Wu Z. L., Zhang X., Liu L., Wang M. L., Xu H. J. Sci. Rep., 2015, 5: 14502.

[24]

Krishnamoorthy S., Krishnan S., Thoniyot P., Low H. Y. ACS Appl. Mater. Inter., 2011, 3(4): 1033.

[25]

Brian K., Shikuan Y., Tony J. H. Nanotechnology, 2013, 24(24): 245704.

[26]

Becker M., Stelzner T., Steinbrück A., Berger A., Liu J., Lerose D., Gösele U., Christiansen S. ChemPhysChem., 2009, 10(8): 1219.

[27]

Zhu Z., Bai B., You O., Li Q., Fan S. Light Sci. Appl., 2015, 4: e296.

[28]

Wang Y., Lu N., Wang W., Liu L., Feng L., Zeng Z., Li H., Xu W., Wu Z., Hu W., Lu Y., Chi L. Nano Res., 2013, 6(3): 159.

[29]

Ohta N., Yagi I. J. Phys. Chem. C, 2008, 112(45): 17603.

[30]

Xu B. B., Wang L., Ma Z. C., Zhang R., Chen Q. D., C., Han B., Xiao X. Z., Zhang X. L., Zhang Y. L., Ueno K., Misawa H., Sun H. B. ACS Nano, 2014, 8(7): 6682.

[31]

Schäfer P., Himcinschi C., Chis V., Zahn D. R. T. Phys. Status Solidi C, 2010, 7(2): 232.

[32]

Kubo N., Homma T., Hondo Y., Osaka T. Electrochim. Acta, 2005, 51(5): 834.

[33]

Wang L., Xu B. B., Chen Q. D., Ma Z. C., Zhang R., Liu Q. X., Sun H. B. Opt. Lett., 2011, 36(17): 3305.

[34]

Wu D., Wang J. N., Wu S. Z., Chen Q. D., Zhao S. A., Zhang H., Sun H. B., Jiang L. Adv. Funct. Mater., 2011, 21(15): 2927.

[35]

Guo L., Jiang H. B., Shao R. Q., Zhang Y. L., Xie S. Y., Wang J. N., Li X. B., Jiang F., Chen Q. D., Zhang T., Sun H. B. Carbon, 2012, 50(4): 1667.

[36]

Ye W., Shen C., Tian J., Wang C., Bao L., Gao H. Electrochem. Commun., 2008, 10(4): 625.

[37]

Fang C., Agarwal A., Ji H., Karen W. Y., Yobas L. Nanotechnology, 2009, 20(40): 405604.

[38]

Panarin A. Y., Terekhov S. N., Kholostov K. I., Bondarenko V. P. Appl. Surf. Sci., 2010, 256(23): 6969.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/