Prediction of stability for polychlorinated biphenyls in transformer insulation oil through three-dimensional quantitative structure-activity relationship pharmacophore model and full factor experimental design

Zheng Xu , Ying Chen , Youli Qiu , Wenwen Gu , Yu Li

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 348 -356.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 348 -356. DOI: 10.1007/s40242-016-5461-7
Article

Prediction of stability for polychlorinated biphenyls in transformer insulation oil through three-dimensional quantitative structure-activity relationship pharmacophore model and full factor experimental design

Author information +
History +
PDF

Abstract

Based on the obtained data of half-lives(t 1/2) for 31 polychlorinated biphenyl congeners(PCBs), 3D quantitative structure-activity relationship(QSAR) pharmacophore was used to establish a 3D QSAR model to predict the t 1/2 values of the remaining 178 PCBs, using the structural parameters as independent variables and lgt 1/2 values as the dependent variable. Among this process, the whole data set(31 compounds) was divided into a training set(24 compounds) for model generation and a test set(7 compounds) for model validation. Then, the full factor experimental design was used to research the potential second-order interactional effect between different substituent positions, obtaining the final regulation scheme for PCB. At last, a 3D QSAR pharmacophore model was established to validate the reasonable regulation targeting typical PCB with respect to half-lives and thermostability. As a result, the cross-validation correlation coefficient(q 2) obtained by the 3D QSAR model was 0.845(>0.5) and the coefficient of determination(r 2) obtained was 0.936(>0.9), indicating that the models were robust and predictive. CoMSIA analyses upon steric, electrostatic and hydrophobic fields were 0.7%, 85.9%, and 13.4%, respectively. The electrostatic field was determined to be a primary factor governing the t 1/2. From CoMSIA contour maps, t 1/2 increased when substituents possessed electropositive groups at the 2′-, 3-, 3′-, 5- and 5′- positions and electronegative groups at the 3-, 3′-, 5-, 6- and 6′- positions, which could increase the PCB stability in transformer insulation oil. Modification of two typical PCB congeners(PCB-77 and PCB-81) showed that the lgt 1/2for three selected modified compounds increased by 13%(average ratio) compared with that of each congener and the thermostability of them were higher, validating the reasonability of the regulatory scheme obtained from the 3D QSAR model. These results are expected to be beneficial in predicting t 1/2 values of PCB homologues and derivatives and in providing a theoretical foundation for further elucidation of the stability of PCBs.

Keywords

Polychlorinated biphenyl / Stability / Half-life / Three-dimensional quantitative structure-activity relationship pharmacophore / Insulation oil / Full factor experimental design

Cite this article

Download citation ▾
Zheng Xu, Ying Chen, Youli Qiu, Wenwen Gu, Yu Li. Prediction of stability for polychlorinated biphenyls in transformer insulation oil through three-dimensional quantitative structure-activity relationship pharmacophore model and full factor experimental design. Chemical Research in Chinese Universities, 2016, 32(3): 348-356 DOI:10.1007/s40242-016-5461-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tanabe S. Environ. Pollut., 1988, 50: 5.

[2]

Giesy J. P., Kannan K. Crit. Rev. Toxicol., 1998, 28: 511.

[3]

Tasdemir Y., Salihoglu G., Salihoglu N. K., Birgül A. Environ. Pollut., 2012, 169: 90.

[4]

Eqani S., Malik R., Katsoyiannis A., Zhang G., Charkraborty P., Mohammad A., Jones K. C. J. Environ. Monit., 2012, 14: 1645.

[5]

Breivik K., Sweetman A., Pacyna J. M., Jones K. C. Sci. Total Environment, 2002, 290: 181.

[6]

Wu S., Xia X., Yang L., Liu H. Chemosphere, 2011, 82: 732.

[7]

Liu J., Cui Z. J., Liu L., Tan F. X. Environmental Science, 2008, 29: 2899.

[8]

Bjorn G. H., Ana B. P., Mohammed R., Bo R. L. Chemsphere, 1999, 39: 2209.

[9]

Halim S. A., Hap Z. Chem-Biol. Interact., 2015, 238: 9.

[10]

Haq Z. U., Uddin R., Yuan H., Petukhov A. A., Choudhary M. I., Madura J. D. J. Chem. Inf. Model., 2007, 48: 1092.

[11]

Svensgaard D. J., Hertzberg R. C.; Eds.: Yang R. S. H., Toxicology of Chemical Mixtures, Academic Press, San Diego, 1994, 599

[12]

Hou T., Xu X. Curr. Pharm. Des., 2004, 10: 1011.

[13]

Yu C., Chen C. J. Taiwan Inst. Chem. E., 2009, 40: 155.

[14]

Valasani K. R., Vangavaragu J. R., Day V. W., Yan S. S. J. Chem. Inf. Model., 2014, 54: 902.

[15]

Aleksandra J., Silvia D. F., Giuseppe V., Franco C., Francesco F. Water Res., 2015, 83: 329.

[16]

Borges G. B., Rohwedder J. J., Bortoni E. C. AASRI Conference on Power and Energy Systems, 2012, 2: 56.

[17]

Li X. L., Ye L., Wang X. X., Wang X. Z., Liu H. L., Qian X. P., Zhu Y. L., Yu H. X. Sci. Total Environ., 2012, 441: 230.

[18]

Mahmood A., Syed J. H., Malik R. N., Zheng Q., Cheng Z. N., Li J., Zhang G. Sci. Total Environ., 2014, 481: 596.

[19]

Ali U., Syed J. H., Mahmood A., Li J., Zhang G., Jones K. C., Malik R. N. Chemosphere, 2015, 134: 172.

[20]

Patil G. S. Chemosphere, 1991, 22: 723.

[21]

Liu J., Cui Z. J., Liu L., Tan F. X. Environmental Science, 2008, 29: 2899.

[22]

Golbraikh A., Tropsha A. J. Comput. Aided. Mol. Des., 2002, 16: 357.

[23]

Li X. L., Ye L., Wang X. X., Wang X. Z., Liu H. L., Qian X. P., Zhu Y. L., Yu H. X. Sci. Total Environ., 2012, 441: 230.

[24]

Li X. L., Ye L., Wang X. X., Wang X. Z., Liu H. L., Zhu Y. L., Yu H. X. Toxicol. Appl. Pharm., 2012, 265: 300.

[25]

Clark M., Cramer R. D., Vanopdenbosch N. J. Comput. Chem., 1989, 10: 982.

[26]

Gasteiger J., Marsili M. Tetrahedron, 1980, 36: 3219.

[27]

Hao M., Li Y., Wang Y., Yan Y., Zhang S. J. Chem. Inf. Model., 2011, 51: 2560.

[28]

Li M., Wei D. B., Zhao H. M., Du Y. G. Chemosphere, 2014, 95: 220.

[29]

Golbraikh A., Tropsha A. J. Mol. Graph. Model., 2002, 20: 269.

[30]

Jiang L., Li Y. J. Chemometr., 2015, 29: 606.

[31]

Diao J., Li Y., Shi S., Sun Y., Sun Y. B. Environ. Contam. Tox., 2010, 85: 109.

[32]

Leach A. R. Molecular Modelling: Principles and Applications, 2001, Harlow: Person Education Limited.

[33]

Li X. L., Li Y., Shi W., Liu H. L., Liu C. S., Qian X. P., Zhu Y. L., Yu H. G. Ecotox. Environ. Safe., 2013, 92: 258.

[34]

Lundgaard L., Hansen W., Linhjell D., Painter T. IEEE T. Power Delive., 2004, 19: 230.

[35]

Degeratu S., Rotaru R., Rizescu S., Danoiu S., Bizdoaca N. G., Alboteanu L. I., Manolea H. O. J. Therm. Anal. Calorim., 2015, 119: 1679.

[36]

Junichi W., Genyo U., Shigemitsu O. IEEE T. Dielect. El. In., 2014, 21: 873.

[37]

Ueta G., Tsuboi T., Okabe S., Amimoto T. IEEE T. Dielect. El. In., 2012, 19: 2216.

[38]

Wada J., Ueta G., Okabe S., Amimoto T. IEEE T. Dielect. El. In., 2013, 20: 1388.

[39]

Shigemitsu O., Genyo U., Toshihiro T. IEEE T. Dielect. El. In., 2013, 20: 346.

[40]

Bao Y. P., Huang Q. Y., Wang W. L., Xu J. J., Jiang F., Feng C. H. Front. Environ. Sci. En., 2011, 5: 505.

[41]

Arooj M., Thangapandian S., John S., Hwang S., Park J. K., Lee K. W. Int. J. Mol. Sci., 2011, 12: 9236.

AI Summary AI Mindmap
PDF

236

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/