Preparation of Au nanoparticles decorated polyaniline nanotube and its catalytic oxidation to ascorbic acid

Xiaoyu Ma , Jianmao Yang , Wenshu Cai , Guodong Zhu , Jianyun Liu

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (4) : 702 -708.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (4) : 702 -708. DOI: 10.1007/s40242-016-5460-8
Article

Preparation of Au nanoparticles decorated polyaniline nanotube and its catalytic oxidation to ascorbic acid

Author information +
History +
PDF

Abstract

With sulfonated electrospun polystyrene fiber as a template, uniform polyaniline(PANI) nanotubes were fabricated via polymerization of aniline followed by template removal. Au nanoparticles(Aunano) were decorated on the PANI nanotube successfully via auto-reduction of HAuCl4 on the PANI nanotube. The morphology of the nanotubes was characterized by means of scanning electron microscopy(SEM) and transmittance electron microscopy(TEM). By varying precursor concentration and incubation time, Aunano-PANI with different size of Aunano was obtained conveniently. Glassy carbon electrode modified with the Aunano decorated PANI nanotubes (Aunano-PANI/GCE) was prepared and used seccessfully for the catalytic oxidation of ascorbic acid(AA). The results of differential pulse voltammetry indicate that there is a good linear relationship between the peak currents and the concentrations of AA in the range of 5―3000 μmol/L, with the limit of detection of 1 μmol/L(S/N>3). There is no mutual interference between AA and dopamine. The electrode has been successfully applied in the detection of AA in vitamin C tablet sample.

Keywords

Electrospinning / Polyaniline nanotube / Gold nanoparticle / Ascorbic acid

Cite this article

Download citation ▾
Xiaoyu Ma, Jianmao Yang, Wenshu Cai, Guodong Zhu, Jianyun Liu. Preparation of Au nanoparticles decorated polyaniline nanotube and its catalytic oxidation to ascorbic acid. Chemical Research in Chinese Universities, 2016, 32(4): 702-708 DOI:10.1007/s40242-016-5460-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vonlanthen D., Lazarev P., See K. A., Wudl F., Heeger A. J. Adv. Mater., 2014, 26(30): 5095.

[2]

Xiao L. F., Cao Y. L., Xiao J., Schwenzer B., Engelhard M. H., Saraf L. V., Nie Z. M., Exarhos G. J. Adv. Mater., 2012, 24(9): 1176.

[3]

Jang J. Adv. Polym. Sci., 2006, 199: 189.

[4]

Chang H. X., Yuan Y., Shi N. L., Guan Y. F. Anal. Chem., 2007, 79(13): 5111.

[5]

Choudary B. M., Roy M., Roy S., Kantam M. L., Sreedhar B., Kumar K. V. Adv. Synth. Catal., 2006, 348(12/13): 1734.

[6]

Gallon B. J., Kojima R. W., Kaner R. B., Diaconescu P. L. Angew Chem. Int. Edit, 2007, 46(38): 7251.

[7]

Baker C. O., Shedd B., Tseng R. J., Martinez-Morales A. A., Ozkan C. S., Ozkan M., Yang Y., Kanert R. B. Acs Nano., 2011, 5(5): 3469.

[8]

Long Y. Z., Zhang L. J., Ma X. J., Chen Z. J., Wang N. L., Zhang Z., Wan M. X. Macromol Rapid Commun., 2003, 24(16): 938.

[9]

Dong H., Prasad S., Nyame V., Jones W. E. Chem Mater., 2004, 16(3): 371.

[10]

Parthasarathy R. V., Martin C. R. Chem. Mater., 1994, 6(10): 1627.

[11]

Miao Y. E., Fan W., Chen D., Liu T. ACS Appl. Mater. Interfaces, 2013, 5(10): 4423.

[12]

Amaya T., Saio D., Hirao T. Macromol. Symp., 2008, 270: 88.

[13]

Anilkumar P., Jayakannan M., Langmuir, 2008, 24(17), 9754

[14]

Ding S. J., Zhang C. L., Yang M., Qu X. Z., Lu Y. F., Yang Z. Z. Polymer, 2006, 47(25): 8360.

[15]

Bao S. Y., Du M. L., Zhang M., Zhu H., Wang P., Yang T. T., Zou M. L. Chem. Eng. J., 2014, 258: 281.

[16]

Shirsat M. D., Bangar M. A., Deshusses M. A., Myung N. V. Appl. Phys. Lett., 2009, 94(8): 083502.

[17]

Liu X., Yang J., Tong L., Zhang Q., Li X., Chen J. Chem. Res. Chinese Universities, 2015, 31(5): 1062.

[18]

Bao S., Du M., Zhang M., Zhu H., Wang P., Yang T., Zou L. Chem. Eng. J., 2014, 258: 281.

[19]

Tseng R. J., Huang J. X., Ouyang J., Kaner R. B., Yang Y. Nano Letters, 2005, 5(6): 1077.

[20]

Li W. G., Jia Q. X., Wang H. L. Polymer, 2006, 47(1): 23.

[21]

Han J., Li L. Y., Guo R. Macromolecules, 2010, 43(24): 10636.

[22]

Uyar T., Besenbacher F. Polymer, 2008, 49(24): 5336.

[23]

You Y., Lee S. J., Min B. M., Park W. H. J. Appl. Polym. Sci., 2006, 99(3): 1214.

[24]

Sertchook H., Avnir D. Chem. Mater., 2003, 15(8): 1690.

[25]

Huang K., Wan M. X. Chem. Mater., 2002, 14(8): 3486.

[26]

McCarthy P. A., Huang J. Y., Yang S. C., Wang H. L. Langmuir, 2002, 18(1): 259.

[27]

Li G. C., Zhang Z. K. Macromolecules, 2004, 37(8): 2683.

[28]

Trakhtenberg S., Hangun-Balkir Y., Warner J. C., Bruno F. F., Kumar J., Nagarajan R., Samuelson L. A. J. Am. Chem. Soc., 2005, 127(25): 9100.

[29]

Neoh K. G., Pun M. Y., Kang E. T., Tan K. L. Synthetic. Met., 1995, 73(3): 209.

[30]

Ting Y. P., Neoh K. G., Kang E. T., Tan K. L. J. Chem. Technol. Biotechnol., 1994, 59(1): 31.

[31]

Li W., McCarthy P. A., Liu D. G., Huang J. Y., Yang S. C., Wang H. L. Macromolecules, 2002, 35(27): 9975.

[32]

Fadley C. S., Shirley D. A. J. Res. Natl. Bur. Stand. A, 1970, 74A: 543.

[33]

Smith J. A., Josowicz M., Engelhard M., Baer D. R., Janata J. PCCP, 2005, 7(20): 3619.

[34]

Sun C. L., Lee H. H., Yang J. M., Wu C. C. Biosens. Bioelectron., 2011, 26: 3450.

[35]

Ping J., Wu J., Wang Y., Ying Y. Biosens. Bioelectron., 2012, 34(1): 70.

[36]

Teymourian H., Salimi A., Khezrian S. Biosens. Bioelectron., 2013, 49(45): 1.

[37]

Kingsley M. P., Desai P. B., Srivastava A. K. J. Electroanal. Chem., 2015, 741: 71.

[38]

Ma Y., Zhao M. G., Cai B., Wang W., Ye Z. Z., Huang J. Y. Biosens. Bioelectron., 2014, 59(9): 384.

[39]

Wang S. Y., Zhang W., Zhong X., Chai Y. Q., Yuan R. Anal. Methods-UK, 2015, 7: 1471.

[40]

Xin Z., Yang C., Sha Y., Yang F., Xi P. Biosens. Bioelectron., 2013, 44(11): 183.

[41]

Kul D., Ghica M. E., Pauliukaite R., Brett C. M. A. Talanta, 2013, 111(13): 76.

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/