Microwave-assisted one-pot synthesis of Ag NPs/C and its application in H2O2 and glucose detection

Chenjiao Ge , Wenbo Lu , Xuping Sun , Jian Tian

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 433 -436.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 433 -436. DOI: 10.1007/s40242-016-5450-x
Article

Microwave-assisted one-pot synthesis of Ag NPs/C and its application in H2O2 and glucose detection

Author information +
History +
PDF

Abstract

The facile preparation of Ag NPs/C via a one-pot strategy was carried out by microwave treatment of a mixed aqueous solution of AgNO3 and glucose at 180 °C for 20 min without the presence of extra reducing agent. The as-synthesized Ag NPs/C showed high catalytic performance toward the reduction of H2O2. The H2O2 sensor constructed with as-synthesized Ag NPs/C exhibited a short amperometric response time of less than 2 s. The linear range was approximately (0.1―50) mmol/L(r=0.997), and the detection limit was approximately 3.3 μmol/L at a signal-to-noise ratio of 3. A glucose biosensor was fabricated by immobilizing glucose oxidase onto Ag NPs/Cmodified glassy carbon electrode to detect glucose. The glucose sensor had a wide linear response range of 2―22 mmol/L(r=0.999) and a detection limit of 190 μmol/L.

Keywords

Carbon / Ag nanoparticles / Microwave / H2O2 / Glucose

Cite this article

Download citation ▾
Chenjiao Ge, Wenbo Lu, Xuping Sun, Jian Tian. Microwave-assisted one-pot synthesis of Ag NPs/C and its application in H2O2 and glucose detection. Chemical Research in Chinese Universities, 2016, 32(3): 433-436 DOI:10.1007/s40242-016-5450-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shiraishi Y., Toshima N. J. Mol. Catal. A: Chem., 1999, 34(141): 187.

[2]

Selvaraj V., Alagar M., Sathish K. K. Applied Catalysis B: Environmental, 2007, 75(1/2): 129.

[3]

Meilikhov M., Yusenko K., Esken D., Turner S., Tendeloo G. V., Fischer R. A. Eur. J. Inorg. Chem., 2010, 24: 3701.

[4]

Campelo J. M., Luna D., Luque R., Marinas J. M., Romero A. A. ChemSusChem., 2009, 2(1): 18.

[5]

Roucoux A., Schulz J., Patin H. Chem. Rev., 2002, 102(10): 3757.

[6]

Bonnemann Y., Richards R. M. Eur. J. Inorg. Chem., 2001, 2001(10): 2455.

[7]

Sergiienko R., Shibata E., Suwa H., Nakamura T., Akase Z., Murakami Y., Shindo D. Ultrason. Sonochem., 2006, 13(1): 6.

[8]

Wang B., Zhang J., Pan Z., Tao X., Wang H. Biosens. Bioelectron., 2009, 24(5): 1141.

[9]

King D. W., Cooper W. J., Rusak S. A., Peake B. M., Kiddle J. J., O’Sullivan D. W., Melamed M. L., Morgan C. R., Theberge S. M. Anal. Chem., 2007, 79(11): 4169.

[10]

Shan C., Yang H., Han D., Zhang Q., Ivaska A., Niu L. Biosens. Bioelectron., 2010, 25(6): 1070.

[11]

Zhu H., Zhang C., Yin Y. J. Cryst. Growth, 2004, 270(314): 722.

[12]

Zhao Y. Y., Wang L. H., Guo Z. M., Chi X. F., Ma X. C., Qi Y., Fang S. N., Li X. L., Liang X. Chem. Res. Chinese Universities, 2015, 31(1): 44.

[13]

Gulrajani M. L., Gupta D., Periyasamy S., Muthu G. S. J. Appl. Polym. Sci., 2008, 108(1): 614.

[14]

Chang G., Luo Y., Lu W., Qin X., Asiri A. M., Al-Youbi A. O., Sun X. Catal. Sci. & Technol., 2012, 2(4): 800.

[15]

Chiu J., Yu C., Yen M., Chen L. Biosens. Bioelectron., 2008, 24(7): 2015.

[16]

Zhao W., Wang H., Qin X., Wang X., Zhao Z., Miao Z., Chen L., Shan M., Fang Y., Chen Q. Talanta, 2009, 80(2): 1029.

[17]

Cui K., Song Y., Yao Y., Huang Z., Wang L. Electrochem. Commun., 2008, 10(4): 663.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/