A simple and rapid label-free fluorimetric “turn off-on” sensor for cadmium detection using glutathione-capped CdS quantum dots

Xiaojian Tang , Jianhui Wang , Ke Zhao , Honghai Xue , Chunhong Ta

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (4) : 570 -575.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (4) : 570 -575. DOI: 10.1007/s40242-016-5448-4
Article

A simple and rapid label-free fluorimetric “turn off-on” sensor for cadmium detection using glutathione-capped CdS quantum dots

Author information +
History +
PDF

Abstract

A convenient label-free fluorescence(FL) nanoprobe for rapid detection of cadmium(Cd) was established using glutathione-capped CdS quantum dots(QDs) and 1,10-phenanthroline(phen). The prepared CdS QDs exhibited a strong FL emission at 536 nm, which could be quenched by phen due to the photoinduced hole transfer(PHT) mechanism. The existence of Cd effectively recovered the FL intensity of CdS QDs, which was due to the easy detachment of phen from the surface of QDs to form [Cd(phen)2(H2O)2]2+ in solution. Cd concentrations were linearly correlated with the FL intensity in the range of 0.0625―1.25 μmol/L under the optimized conditions and the detection limit was 0.01 μmol/L. Finally, the Cd concentration was accurately quantified in real water sample using the proposed sensor.

Keywords

CdS quantum dot / Cadmium / 1,10-Phenanthroline / Photoinduced hole transfer mechanism

Cite this article

Download citation ▾
Xiaojian Tang, Jianhui Wang, Ke Zhao, Honghai Xue, Chunhong Ta. A simple and rapid label-free fluorimetric “turn off-on” sensor for cadmium detection using glutathione-capped CdS quantum dots. Chemical Research in Chinese Universities, 2016, 32(4): 570-575 DOI:10.1007/s40242-016-5448-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu L. D., Fu X. C., Liu H., Li J. C., Song Y. Anal. Chim. Acta, 2014, 851: 43.

[2]

Mehta V. N., Basu H., Singhal R. K., Kailas S. K. Sens. Actuators, B, 2015, 850: 220.

[3]

Wang C., Ji J. F., Yang Z. F., Chen L. X., Browne P., Yu R. L. Trace Elem. Res., 2012, 148: 264.

[4]

Brzoska M. M., Galazyn-Sidorczuk M., Dzwilewska I. J. Appl. Toxicol., 2013, 33(12): 784.

[5]

Gonzalez-Estecha M., Trasobares E., Fuentes M., Martinez M. J., Cano S., Vergara N., Gaspar M. J., Gonzalez-Revalderia J., Barciela M. C., Bugarin Z., Fernandez M. D., Badia P., Pintos C., Gonzalez M., Guillen J. J., Bermejo P., Fernandez C., Arroyo M., Grp P. J. Trace Elem. Med. Biol., 2011, 25: S22.

[6]

Strizak Z., Ivankovic D., Profrock D., Helmholz H., Cindric A. M., Erk M., Prange A. Sci. Total Environ., 2014, 470: 159.

[7]

Iordache M., Meghea A., Neamtu S., Popescu L. R., Iordache I. Rev. Chim. Buchar., 2014, 65: 87.

[8]

Chahid A., Hilali M., Benlhachimi A., Bouzid T. Food Chem., 2014, 147: 357.

[9]

Ren T., Zhao L. J., Sun B. S., Zhong R. G. J. Environ. Qual., 2013, 42: 1752.

[10]

Rodrigo M. A. M., Cernei N., Kominkova M., Zitka O., Beklova M., Zehnalek J., Kizek R., Adam V. Int. J. Environ. Res. Public Health, 2013, 10: 1304.

[11]

Gautier C., Bourgeois M., Isnard H., Nonell A., Stadelmann G., Goutelard F. J. Chromatogr. A, 2011, 1218: 5241.

[12]

Thompson R. Q., Christopher S. J. Anal. Methods, 2013, 5: 1346.

[13]

Murphy K. E., Vetter T. W. Anal. Bioanal. Chem., 2013, 405: 4579.

[14]

Cao X. Y., Shen F., Zhang M. W., Bie J. X., Liu X., Luo Y. L., Guo J. J., Sun C. Y. RSC Adv., 2014, 4: 16597.

[15]

Cai Y. L., Meng X. M., Wang S. X., Zhu M. Z., Pan Z. W., Guo Q. X. Tetrahedron Lett., 2013, 54: 1125.

[16]

He H., Ng D. K. P. Chem. Asian J., 2013, 8: 1441.

[17]

Liu X. J., Zhang N., Zhou J., Chang T. J., Fang C. L., Shangguan D. H. Analyst, 2013, 138: 901.

[18]

Morris-Cohen A. J., Malicki M., Peterson M. D., Slavin J. W. J., Weiss M. A. Chem. Mater., 2013, 25: 1155.

[19]

Li L. L., Wu P. W., Hwang K., Lu Y. J. Am. Chem. Soc., 2013, 135: 2411.

[20]

Wang S., Han M. Y., Huang D. J. Am. Chem. Soc., 2009, 131: 11692.

[21]

Yan X., Hu T. Y., Wang L., Zhang L. N., Su X. G. Biosens. Bioelectron., 2015, 79: 922.

[22]

Jin T., Sasaki A., Kinjo M., Miyazaki J. Chem. Commun., 2010, 46: 2408.

[23]

Yan X., Li H. X., Han X. S., Su X. G. Biosens. Bioelectron., 2015, 74: 277.

[24]

Garai-Ibabe G., Möller M., Pavlov V. Anal. Chem., 2012, 84: 8033.

[25]

Saa L., Virel A., Sanchez-Lopez J., Pavlov V. Chem. Eur. J., 2010, 16: 6187.

[26]

Yang H. Y., Liu R. J., Y., Wang L. K., Li T. T., Li G. X., Zhang Y. T., Zhang B. L. Chem. Res. Chinese Universities, 2014, 30(1): 13.

[27]

Wang K., Qian J., Jiang D., Yang Z. T., Du X. J., Wang K. Biosens. Bioelectron., 2015, 65: 83.

[28]

Hua X. Y., Zhu K., Guo Q. S., Liu Y. Q., Ye M. F., Sun Q. J. Anal. Chim. Acta, 2014, 812: 191.

[29]

Garai-Ibabe G., Saa L., Pavlov V. Anal. Chem., 2013, 85: 5542.

[30]

Tedsana W., Tuntulani T., Ngeontae W. Anal. Chim Acta, 2013, 783: 65.

[31]

Yuan J., Zhai X. R., Xu G. Y., Tan Y. B., Zhang J. Chem. J. Chinese Universities, 2014, 35(2): 325.

[32]

Wu Y. G., Zhan S. S., Wang L. M., Zhou P. Analyst, 2014, 139: 1550.

[33]

Wang A. J., Guo H., Zhang M., Zhou D. L., Wang R. Z., Feng J. J. Microchim. Acta, 2013, 180: 1051.

[34]

Zhang Y., Zhao Y., Yang Y., Shen J. C., Yang H., Zhou Z. G., Yang S. P. Sens. Actuators B, 2015, 220: 622.

[35]

Philipsa M. F., Gopalanb A. I., Lee K. P. J. Hazard. Mater., 2012, 237: 46.

[36]

Nguyen P. K. Q., Lunsford S. K. Talanta, 2012, 101: 110.

[37]

Xu H., Miao R., Fang Z., Zhong X. H. Anal. Chim. Acta, 2011, 687: 82.

[38]

Zhang H. T., Faye D., Lefèvre J. P., Delaire J. A., Leray I. Microchem. J., 2013, 106: 167.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/