Preparation of multistage sheet-cluster ZnO photoanode via a solid state reaction and its property in DSSCs

Qiuxiang Wen , Lin Dong , Xiaoyong Sun , Jia Zhuang , Zemin Chen

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 437 -442.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 437 -442. DOI: 10.1007/s40242-016-5439-5
Article

Preparation of multistage sheet-cluster ZnO photoanode via a solid state reaction and its property in DSSCs

Author information +
History +
PDF

Abstract

Different precursors were prepared via a simple low heat solid state reaction(LHSSR) upon changing the ligands. The ZnO photoanode films were obtained by the doctor blade technique, and their composition, thermal decomposition process and morphologies were identified by means of X-ray diffraction(XRD), thermal gravimetric analysis-differential thermal analysis(TGA-SDTA) and scanning electron microscope(SEM). The results show that the morphologies of ZnO photoanodes are irregular block, regular lamellar and irregular sheet-cluster, and the multistage structure can be found in all the photoanodes. Furthermore, there exists a genetic effect of morphology between the precursors and the corresponding photoanodes. The optimum power conversion efficiency of the sheet-cluster ZnO photoanode was 3.12% with the short circuit current density(J sc) being 11.23 mA/cm2. The multistage sheet-cluster structure could result in the increase of the scattering of the incident light and provide a rapid electronic transmission channel to reduce the risk of electronic recombination. A beneficial enlightenment was obtained to simplify the process and the photoanode films with various morphologies can be prepared with lower price in the further research.

Keywords

Solid state reaction / Sheet-cluster structure / ZnO / Photoanode / Dye sensitized solar cell(DSSC)

Cite this article

Download citation ▾
Qiuxiang Wen, Lin Dong, Xiaoyong Sun, Jia Zhuang, Zemin Chen. Preparation of multistage sheet-cluster ZnO photoanode via a solid state reaction and its property in DSSCs. Chemical Research in Chinese Universities, 2016, 32(3): 437-442 DOI:10.1007/s40242-016-5439-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

O’Regan B., Grätzel M. Nature, 1991, 353: 737.

[2]

Chen H., Yua W., Chang W., Lua Y. Electrochim. Acta, 2016, 187: 655.

[3]

Tiwana P., Docampo P., Johnston M. B., Snaith H. J., Herz L. M. ACS Nano, 2011, 5: 5158.

[4]

Xia H., Wang J., Jia R., Wang Q., Zhang H. Chem. Res. Chinese Universities, 2015, 31(2): 276.

[5]

Yao Z., Zhang M., Wu H., Yang L., Li R., Wang P. J. Am. Chem. Soc., 2015, 137: 3799.

[6]

Xie M., Chen J., Wang J., Zhang H. Chem. Res. Chinese Universities, 2015, 31(5): 830.

[7]

Towannang M., Kumlangwan P., Maiaugree W., Ratchaphonsaenwong K., Harnchana V., Jarenboon W., Pimanpang S., Amornkitbamrung V. Electron. Mater. Lett., 2015, 11: 643.

[8]

Guo L., Dai S., Wang K., Fang X., Shi C., Pan X. Chem. J. Chinese Universities, 2005, 26(10): 1934.

[9]

Yu J., Zhang C., Zhuang J., Qin H., He Q., Liang Q. Chem. Res. Chinese Universities, 2015, 31(3): 412.

[10]

Ma J., Yao S., Cheng P., Du S., Sun Y. Chem. Res. Chinese Universities, 2015, 31(5): 841.

[11]

Chen J., Li C., Xu F., Zhou Y., Lei W., Sun L., Zhang Y. RSC Adv., 2012, 2: 7384.

[12]

Ameen S., Akhtar M. S., Seo H. K., Kim Y. S., Shin H. S. Chem. Eng. J., 2012, 187: 351.

[13]

Wang K., Shi Y. T., Guo W., Yu X. Q., Ma T. L. Electrochim. Acta, 2014, 135: 242.

[14]

Du S., Cheng P., Sun P., Wang B., Cai Y., Liu F., Zheng J., Lu G. Chem. Res. Chinese Universities, 2014, 30(4): 661.

[15]

Plank N. O. V., Howard I., Rao A., Wilson M. W. B., Ducati C., Mane R. S., Bendall J. S., Louca R. R. M., Greenham N. C., Miura H., Friend R. H., Snaith H. J., Welland M. E. J. Phys. Chem. C, 2009, 113: 18515.

[16]

Barpuzary D., Patra A. S., Vaghasiya J. V., Solanki B. G., Soni S. S., Qureshi M. ACS Appl. Mater. Inter., 2014, 6: 12629.

[17]

Lee Y. M., Yang H. W. J. Solid State Chem., 2011, 184: 615.

[18]

Hao Y., Sun B., Luo C., Fan L., Pei J., Li Y. Chem. J. Chinese Universities, 2014, 35(1): 127.

[19]

Meng Y., Lin Y., Lin Y., Yang J. J. Solid State Chem., 2014, 210: 160.

[20]

Anta J. A., Guillén E., Tena-Zaera R. J. Phys. Chem. C, 2012, 116: 11413.

[21]

Galoppini E., Rochford J., Chen H., Saraf G., Lu Y., Hagfeldt A., Boschloo G. J. Phys. Chem. B, 2006, 110: 16159.

[22]

Qiu J., Guo M., Wang X. ACS Appl. Mater. Inter., 2011, 3: 2358.

[23]

Lee H., Hwang D., Jo S. M., Kim D., Seo Y., Kim D. Y. ACS Appl. Mater. Inter., 2012, 4: 3308.

[24]

Zhang H., Chen G., Yang G., Zhang J., Lu X. J. Mater. Sci.: Mater. Electron., 2007, 18: 381.

[25]

Jin C., Yuan X., Ge W., Hong J., Xin X. Nanotechnology, 2003, 14: 667.

[26]

Hou X., Zhou F., Liu W. Mater. Lett., 2006, 60: 3786.

[27]

Zhu Y., Zhou Y. Appl. Phys. A, Mater., 2008, 92: 275.

[28]

Sun Z., Liu L., Zhang L., Jia D. Nanotechnology, 2006, 17: 2266.

[29]

Wang H., Li R., Xiang C. Advanced Materials Research, 2012, 567: 25.

[30]

Guo H. L., Zhu Q., Wu X. L. Nanoscale, 2015, 7: 7216.

[31]

Felbier P., Yang J., Theis J., Liptak R. W., Wagner A., Lorke A., Bacher G., Kortshagen U. Adv. Funct. Mater., 2014, 24: 1988.

[32]

Wen Q., Zhuang J., He Q., Deng Y., Li H., Guo J. RSC Adv., 2015, 5: 91997.

[33]

Yin X., Wang B., He M., He T. Nano Res., 2012, 5: 1.

[34]

Zhang Y., Lan D., Wang Y., Wang F. Frontiers of Chemistry in China, 2008, 3: 229.

[35]

Greene L. E., Yuhas B. D., Law M., Zitoun D., Yang P. Inorg. Chem., 2006, 45: 7535.

[36]

Patra A. K., Dutta A., Bhaumik A. J. Solid State Chem., 2014, 215: 135.

[37]

Kang S. H., Choi S. H., Kang M. S., Kim J. Y., Hyeon T., Sung Y. E. Adv. Mater., 2008, 20: 54.

[38]

Ku C. H., Wu J. J. Appl. Phys. Lett., 2007, 91: 093117.

[39]

Tiwana P., Docampo P., Johnston M. B., Snaith H. J., Herz L. M. ACS Nano, 2011, 5: 5158.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/