Gold and silver nanoparticles supported on metal-organic frameworks: a highly active catalyst for three-component coupling reaction

Lili Liu , Xishi Tai , Guanglin Yu , Huanmei Guo , Qingguo Meng

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 443 -450.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 443 -450. DOI: 10.1007/s40242-016-5435-9
Article

Gold and silver nanoparticles supported on metal-organic frameworks: a highly active catalyst for three-component coupling reaction

Author information +
History +
PDF

Abstract

Engineering metal-organic frameworks(MOF) for heterogeneous catalysts have been of extreme interest since they have large pore size within the crystalline framework and well defined pore architecture. Ni-containing MOF Ni2(3,5-Pydc)2(H2O)8·2H2O(1·H2O) was prepared by solvothermal method from 3,5-pyridinedicarboxylic acid, D-camphoric acid and Ni(NO3)2·6H2O in dimethylformamide(DMF)/water(volume ratio 2:1). And two gold and silver functionalized 1·H2O catalysts were prepared by impregnation method. Catalysts 2.53%Au/MOF and 4.23%Ag/MOF were in-depth characterized by single crystal X-ray diffraction, powder X-ray diffraction(PXRD), thermogravimetric analysis(TGA), transmission electron microscopy(TEM), and inductively coupled plasma-atomic emission spectroscopy(ICP-AES). Their catalytic performance was examined in one-pot synthesis of structurally divergent propargylamines via three component coupling of aldehyde, alkyne, and amine(A3) in 1,4-dioxane. The results show that the catalysts all displayed high reactivities, and a selectivity of 100% for propargylamines. Catalysts 2.53%Au/MOF and 4.23%Ag/MOF have proved to be applicable to a wide range of substrates. Catalysts 2.53%Au/MOF and 4.23%Ag/MOF can be easily recycled and used repetitively at least 3 times with a slight drop in activity. These features render the catalysts particularly attractive in the practice of propargylamines synthesis in an environmentally friendly manner.

Keywords

Metal-organic framework / Three component coupling reaction / Gold / Silver / Immobilization

Cite this article

Download citation ▾
Lili Liu, Xishi Tai, Guanglin Yu, Huanmei Guo, Qingguo Meng. Gold and silver nanoparticles supported on metal-organic frameworks: a highly active catalyst for three-component coupling reaction. Chemical Research in Chinese Universities, 2016, 32(3): 443-450 DOI:10.1007/s40242-016-5435-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu L. L., Zhang X., Gao J. S., Xu C. M. Green Chem., 2012, 14: 1710.

[2]

Li P., Wang L. Tetrahedron, 2007, 63: 5455.

[3]

Dyker G. Angew. Chem. Int. Ed., 1999, 38: 1698.

[4]

Bloch R. Chem. Rev., 1998, 98: 1407.

[5]

Jung M. E., Huang A. Org. Lett., 2000, 2: 2659.

[6]

Shabbir S., Lee Y., Rhee H. J. Catal., 2015, 322: 104.

[7]

Bhuyan D., Saikia M., Saikia L. Catal. Commun., 2015, 58: 158.

[8]

Srinivas V., Koketsu M. Tetrahedron, 2013, 69: 8025.

[9]

Grirrane A., Alvarez E., García H., Corma A. Angew. Chem. Int. Ed., 2014, 53: 7253.

[10]

Chen T. T., Cai C. Catal. Commun., 2015, 65: 102.

[11]

Castelló L. M., Nájera C., Sansano J. M., Larrañaga O., de Cózar A., Cossío F. P. Synthesis, 2015, 47(7): 934.

[12]

Li Z., Wei C., Chen L., Varmab S., Li R. C. J. Tetrahedron Lett., 2004, 45: 2443.

[13]

Borah B. J., Borah S. J., Saikia K., Dutta D. K. Catal. Sci. Technol., 2014, 4: 4001.

[14]

Huang J. L., Gray D. G., Li C. J. J. Org. Chem., 2013, 9: 1388.

[15]

Tian D. Adv. Mater. Res., 2012, 550―553: 336.

[16]

Yong G.P., Tian D., Tong H. W., Liu S. M. J. Mol. Catal. A: Chem., 2010, 323: 40.

[17]

Zhang X., Corma A. Angew. Chem. Int. Ed., 2008, 47: 4358.

[18]

Layek K., Chakravarti R., Kantam M. L., Maheswaran H., Vinu A. Green Chem., 2011, 13: 2878.

[19]

Yan W. J., Wang R., Xu Z. Q., Xu J. K., Lin L., Shen Z. Q., Zhou Y. F. J. Mol. Catal. A: Chem., 2006, 255: 81.

[20]

Datta K. K. R., Reddy B. V. S., Ariga K., Vinu A. Angew. Chem. Int. Ed., 2010, 49: 5961.

[21]

Zhang W. J., Jiang P. P., Wang Y., Zhang J., Zheng J. W., Zhang P. B. Chem. Eng.^J., 2014, 257: 28.

[22]

Horike S., Dincă M., Tamaki K., Long G. R. J. Am. Chem. Soc., 2008, 130: 5854.

[23]

Liu L. L., Zhang X., Rang S. M., Yang Y., Dai X. P., Gao J. S., Xu C. M., He J. RSC Adv., 2014, 4: 13093.

[24]

Wu X. F., Bao Z. B., Yuan B., Wang J., Sun Y. Q., Luo H. M., Deng S. G. Micropor. Mesopor. Mat., 2013, 180: 114.

[25]

Li B., Wen H. M., Zhou W., Chen B. L. J. Phys. Chem. Lett., 2014, 5: 3468.

[26]

Banerjee M., Das S., Yoon M., Choi H. J., Hyun M. H., Park S. M., Seo G., Kim K. J. Am. Chem. Soc., 2009, 131: 7524.

[27]

Schlichte K., Kratzke T., Kaskel S. Micropor. Mesopor. Mat., 2004, 73: 81.

[28]

Farrusseng D., Schlichte K., Spliethoff B., Wingen A., Kaskel S., Bradley J. S., Schüth F. Angew. Chem. Int. Ed., 2001, 40: 4204.

[29]

Dhakshinamoorthy A., Alvaro M., Corma A., Garcia H. Dalton Trans., 2011, 40(24): 6344.

[30]

Phan N. T. S., Nguyen T. T., Nguyen C. V., Nguyen T. T. Appl. Catal. A: Gen., 2013, 457: 69.

[31]

Dhakshinamoorthy A., Alvaro M., Garcia H. ACS Catal., 2011, 1(1): 48.

[32]

Wang W. X., Li Y. W., Zhang R. J., He D. H., Liu H. L., Liao S. J. Catal. Commun., 2011, 12: 875.

[33]

Kim J., Kim S. N., Jang H. G., Seo G., Ahn W. S. Appl. Catal. A: Gen., 2013, 453: 175.

[34]

Yang D. A., Cho H. Y., Kim J., Yang S. T., Ahn W. S. Energy Environ. Sci., 2012, 5(4): 6465.

[35]

Opelt S., Turk S., Dietzsch E., Henschel A., Kaskel S., Klemm E. Catal. Commun., 2008, 9: 1286.

[36]

Zhao X. M., Jin Y., Zhang F. M., Zhong Y. J., Zhu W. D. Chem. Eng.^J., 2014, 239: 33.

[37]

Zhang F. M., Jin Y., Fu Y. H., Zhong Y. J., Zhu W. D., Ibrahim A. A., EI-Shall M. S. J. Mater. Chem. A, 2015, 3: 17008.

[38]

Reihaneh K., Shahram T., Valiollah M., Majid M., Iraj M. B., Ahmad R. K., Farnaz Z. J. Org. Chem., 2014, 761: 127.

[39]

Gao S., Zhao N., Shu M., Che S. Appl. Catal. A: Gen., 2010, 388: 196.

[40]

Zhou Y. X., Song J. L., Liang S. G., Hu S. Q., Liu H. Z., Jiang T., Han B. X. J. Mol. Catal. A: Chem., 2009, 308(1/2): 68.

[41]

Gascon J., Aktay U., Hernandez-Alonso M. D., van Klink G. P. M., Kapteijn F. J. Catal., 2009, 261: 75.

[42]

Oxford G. A. E., Dubbeldam D., Broadbelt L. J., Snurr R. Q. J. Mol. Catal. A: Chem., 2011, 334: 89.

[43]

Vermoortele F., Ameloot R., Vimont A., Serre C., Vos D. D. Chem. Commun., 2011, 47(5): 1521.

[44]

Sheldrick G. M. SHELXS 97, Program for Crystal Structure Refinement, 1997, Göttingen: University of Göttingen.

[45]

Jin Q., Zhao J., Shi X. Chem. J. Chinese Universities, 2010, 31(8): 1496.

[46]

Hareesh K., Joshi R. P., Dahiwale S. S., Bhoraskar V. N., Dhole S. D. Vacuum, 2016, 124: 40.

[47]

Kidwai M., Bansal V., Kumar A., Mozumder S. Green Chem., 2007, 9: 742.

[48]

Reddy K. M., Babu N. S., Suryanarayana I., Prasad P. S. S., Lingaiah N. Tetrahedron Lett., 2006, 47(6): 7563.

[49]

Lo V. K. L., Liu Y., Wong M. K., Che C. M. Org. Lett., 2006, 8: 1529.

[50]

Li C. J., Wei C. Chem. Commun., 2002, 3: 268.

[51]

Huma H. Z. S., Halder R., Karla S. S., Das J., Iqbal J. Tetrahedron Lett., 2002, 43(48): 6485.

[52]

Wei C., Li C. J. J. Am. Chem. Soc., 2003, 125: 9584.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/