A series of pure orange-yellow iridium complexes with low efficiency roll-off: A computational study

Mingxing Song , Jian Huang , Fuquan Bai , Chunxu Wang , Hongbo Liu , Jin Wang , Dongfei Li , Zhengkun Qin

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 451 -454.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 451 -454. DOI: 10.1007/s40242-016-5425-y
Article

A series of pure orange-yellow iridium complexes with low efficiency roll-off: A computational study

Author information +
History +
PDF

Abstract

The electronic structures and spectroscopic properties of heteroleptic cyclometalated iridium(III) complexes were investigated. The geometries, electronic structures, and the lowest-lying excited states of (DBQ)2Ir(acac) and (MDQ)2Ir(acac) were investigated via density functional theory-based approaches. A series of designed models of (DBQ)2Ir(dpis), (DBQ)2Ir(tpip), (MDQ)2Ir(dpis) and (MDQ)2Ir(tpip) was also calculated for comparison. The structures in the ground and excited states were optimized via B3LYP method. The lowest absorptions and emissions spectra were evaluated via TD-B3LYP and TD-PBE1PBE methods. The computational results reveal that the emission peaks of the designed complexes are at around 585―640 nm, which belong to the orange-yellow wavelength. The frontier molecular orbital properties indicate that the Ir(III) complexes have low efficiency roll-off.

Keywords

Organic light-emitting diode(OLED) / Ir(III) complex / Time-dependent density functional theory(TD-DFT) / Excited state / Efficiency roll-off

Cite this article

Download citation ▾
Mingxing Song, Jian Huang, Fuquan Bai, Chunxu Wang, Hongbo Liu, Jin Wang, Dongfei Li, Zhengkun Qin. A series of pure orange-yellow iridium complexes with low efficiency roll-off: A computational study. Chemical Research in Chinese Universities, 2016, 32(3): 451-454 DOI:10.1007/s40242-016-5425-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lowry M. S., Bernhard S. Chem. Eur. J., 2006, 12: 7970.

[2]

Wook S., Mei M., You H. K., Woo K. Journal of Luminescence, 2012, 132: 2122.

[3]

Müllen K., Scherf U. Organic Light-emitting Devices, 2006, Weinheim: Wiley-VCH.

[4]

Li Z., Meng H. Organic Light-emitting Materials, 2006, Boca Raton: Devices, CRC Press.

[5]

Yersin H. Highly Efficient OLEDs with Phosphorescent Materials, 2008, Weinheim: Wiley-VCH.

[6]

Kamtekar K. T., Monkman A. P., Bryce M. R. Adv. Mater., 2010, 22: 572.

[7]

Chen W., Lu L., Cheng J. Optik., 2010, 121: 107.

[8]

Chou P. T., Chi Y. Chem. Eur. J., 2007, 13: 380.

[9]

Sun J., Dong H., Wang H., Miao Y., Xu H., Li J., Wu Y., Xu B. Chem. J. Chinese Universities, 2015, 36(10): 1859.

[10]

Holmes R. J., Forrest S. R., Tung Y. J., Kwong R. C., Brown J. J., Garon S., Thompson M. E. Appl. Phys. Lett., 2003, 8: 2422.

[11]

Tokito S., Iijima T., Suzuri Y., Kita H., Tsuzuki T., Sato F. Appl. Phys. Lett., 2003, 83: 569.

[12]

Li J., Djurovich P. I., Alleyne B. D., Yousufuddin M., Ho N. N., Thomas J. C., Peters J. C., Bau R., Thompson M. E. Inorg. Chem., 2005, 44: 1713.

[13]

Okada S., Okinaka K., Iwawaki H., Furugori M., Hashimoto M., Mukaide T., Kamatani J., Igawa S., Tsuboyama A., Takiguchi T., Ueno K. Dalton Trans., 2005, 9: 1583.

[14]

Lyu Y. Y., Byun Y., Kwon O., Han E., Jeon W. S., Das R. R., Char K. J. Phys. Chem. B, 2006, 110: 10303.

[15]

Yang C. H., Cheng Y. M., Chi Y., Hsu C. J., Fang F. C., Wong K. T., Chou P. T., Chang C. H., Tsai M. H., Wu C. C. Angew. Chem. Int. Ed., 2007, 46: 2418.

[16]

Ho C. L., Wong W. Y., Wang Q., Ma D. G., Wang L. X., Lin Z. Y. Adv. Funct. Mater., 2008, 18: 928.

[17]

Chang C. F., Cheng Y. M., Chi Y., Chiu Y. C., Lin C. C., Lee G. H., Chou P. T., Chen C. C., Chang C. H., Wu C. C. Angew. Chem. Int. Ed., 2008, 47: 4542.

[18]

Kang J. W., Lee S. H., Park H. D., Jeong W. I., Yoo K. M., Park Y. S., Kim J. J. Appl. Phys. Lett., 2007, 90: 223508.

[19]

Song M. X., Hao Z. M., Wu Z. J., Song S. Y., Zhou L., Deng R. P., Zhang H. J. J. Phys. Org. Chem., 2013, 26: 840.

[20]

Song M. X., Hao Z. M., Wu Z. J., Song S. Y., Zhou L., Deng R. P., Zhang H. J. International Journal of Quantum Chemistry, 2013, 113: 1641.

[21]

Song M. X., Wang G. F., Wang J., Wang Y. H., Bai F. Q., Qin Z. K. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 134: 406.

[22]

Sun Y., Noel C. G., Kanno H., Ma B., Mark E. T., Stephen R. F. Nature, 2006, 440: 908.

[23]

Williams E. L., Haavisto K., Li J., Jabbour G. E. Adv. Mater., 2007, 19: 197.

[24]

Sun Y., Forrest S. R. Appl. Phys. Lett., 2007, 91: 263503.

[25]

Zhu Y. C., Zhou L., Li H. Y., Xu Q. L., Teng M. Y., Zheng Y. X., Zuo J. L., Zhang H. J., Zheng X. Y. Adv. Mater., 2011, 23: 4041.

[26]

Wu L. L., Tsai S. H., Guo T. F., Yang C. H., Sun I. W. J. Lumin., 2007, 126: 687.

[27]

Li M., Zeng H., Meng Y., Sun H., Liu S., Lu Z., Huang Y., Pu X. Dalton Trans., 2011, 40: 7153.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/