Molecular size and morphology of single chains of poly(sulfobetaine methacrylate)

Jingfeng Yu , Zhiying Li , Xiaoli Liu , Sanan Song , Ge Gao , Qing Zhang , Fengqi Liu

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 499 -504.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 499 -504. DOI: 10.1007/s40242-016-5419-9
Article

Molecular size and morphology of single chains of poly(sulfobetaine methacrylate)

Author information +
History +
PDF

Abstract

The effects of the concentration of sodium chloride in an aqueous solution(c NaCl) and the temperature on the molecular size of poly(sulfobetaine methacrylate)(PSBMA) were studied via viscometry and dynamic light scattering( DLS). The morphology of single-chain PSBMA was determined by atomic force microscopy(AFM). The results demonstrate that the hydrodynamic diameter of PSBMA can be expressed as a continuous function of cNaCl, with the molecular size of PSBMA increasing and eventually approaching an asymptotic value with increasing cNaCl. The molecular size of PSBMA at a lower c NaCl(0.04 mol/L) increases with increasing temperature, which is the opposite of the temperature effect at a higher c NaCl(2.0 mol/L). Therefore, the internal structure of PSBMA chains in solutions with a low salt concentration differs from that in solutions with a high salt concentration. In addition, the morphology of single chains of PSBMA appears to be spherical, containing 89% void space, and the apparent size of the dried chains is almost identical to that in solution.

Keywords

Poly(sulfobetaine methacrylate) / Molecular size / Morphology of single chain

Cite this article

Download citation ▾
Jingfeng Yu, Zhiying Li, Xiaoli Liu, Sanan Song, Ge Gao, Qing Zhang, Fengqi Liu. Molecular size and morphology of single chains of poly(sulfobetaine methacrylate). Chemical Research in Chinese Universities, 2016, 32(3): 499-504 DOI:10.1007/s40242-016-5419-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lowe A. B., McCormick C. L. Chem. Rev., 2002, 102(11): 4177.

[2]

Kudaibergenov S., Jaeger W., Laschewsky A. Adv. Polym. Sci., 2006, 201: 157.

[3]

Lowe A. B., McCormick C. L. ACS Symposium Series, 2000, Washington D. C.: American Chemical Society, 1.

[4]

Favresse P., Laschewsky A. Polymer, 2001, 42(7): 2755.

[5]

Cao B., Tang Q., Cheng G. J. Biomater Sci., Polymer Edition, 2014, 25(14/15): 1502.

[6]

Kasák P., Kroneková Z., Krupa I., Lacík I. Polymer, 2011, 52(14): 3011.

[7]

Arotçaréna M., Heise B., Ishaya S., Laschewsky A. J. Am. Chem. Soc., 2002, 124(14): 3787.

[8]

Pujol-Fortin M. L., Galin J. C. Macromolecules, 1991, 24(16): 4523.

[9]

Miyazawa K., Winnik F. M. Macromolecules, 2002, 35(7): 2440.

[10]

Zhang Z., Chao T., Chen S., Jiang S. Langmuir, 2006, 22(24): 10072.

[11]

Yu B. Y., Zheng J., Chang Y., Sin M. C., Chang C. H., Higuchi A., Sun Y. M. Langmuir, 2014, 30(25): 7502.

[12]

Liu Q., Singh A., Lalani R., Liu L. Biomacromolecules, 2012, 13(4): 1086.

[13]

Chang Y., Chen W. Y., Yandi W., Shih Y. J., Chu W. L., Liu Y. L., Chu C. W., Ruaan R. C., Higuchi A. Biomacromolecules, 2009, 10(8): 2092.

[14]

Holmlin R. E., Chen X., Chapman R. G., Takayama S., Whitesides G. M. Langmuir, 2001, 17(9): 2841.

[15]

Chang Y., Chen S., Zhang Z., Jiang S. Langmuir, 2006, 22(5): 2222.

[16]

Zhang Z., Chen S., Chang Y., Jiang S. J. Phys. Chem. B., 2006, 110(22): 10799.

[17]

Yamakov V., Milchev A., Limbach H. J., Dünweg B., Everaers R. Phys. Rev. Lett., 2000, 85(20): 4305.

[18]

de Vos W. M., Leermakers F. A. M., Lindhoud S., Prescott S. W. Macromolecules, 2011, 44(7): 2334.

[19]

Zhao C., Li L., Wang Q., Yu Q., Zheng J. Langmuir, 2011, 27(8): 4906.

[20]

Chen S. F., Li L., Zhao C., Zheng J. Polymer, 2010, 51(23): 5283.

[21]

Schlenoff J. B. Langmuir, 2014, 30(32): 9625.

[22]

Azzaroni O., Brown A. A., Huck W. T. S. Angew. Chem., 2006, 118(11): 1802.

[23]

Yang W., Chen S., Cheng G., Vaisocherová H., Xue H., Li W., Zhang J., Jiang S. Langmuir, 2008, 24(17): 9211.

[24]

Huglin M. B., Radwan M. A. Makromol. Chem., 1991, 192(10): 2433.

[25]

Huglin M. B., Radwan M. A. Polym. Int., 1991, 26(2): 97.

[26]

Soto V. M. M., Galin J. C. Polymer, 1984, 25(2): 254.

[27]

Liaw D. J., Lee W. F., Whung Y. C., Lin M. C. J. Appl. Polym. Sci., 1987, 34(3): 999.

[28]

Schulz D. N., Peiffer D. G., Agarwal P. K., Larabee J., Kaladas J. J., Handwerker L. S. B., Garner R. T. G. Polymer, 1986, 27(11): 1734.

[29]

Moldakarimov S. B., Kramarenko E. Y., Khokhlov A. R., Kudaibergenov S. E. Macromol. Theory. Simul., 2001, 10(8): 780.

[30]

Gutin A. M., Shakhnovich E. I. Phys. Rev. E., 1994, 50(5): R3322.

[31]

Everaers R., Johner A., Joanny J. F. Macromolecules, 1997, 30(26): 8478.

[32]

Zhou Z., Chu B. Macromolecules, 1994, 27(8): 2025.

[33]

Mary P., Bendejacq D. D., Labeau M. P., Dupuis P. J. Phys. Chem. B., 2007, 111(27): 7767.

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/