Crystal structure, vibrational studies, optical properties and TG-DTA investigations of a new chlorocadmate templated by 1-methylimidazolium

Melek Hajji , Taha Guerfel

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 253 -260.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 253 -260. DOI: 10.1007/s40242-016-5404-3
Article

Crystal structure, vibrational studies, optical properties and TG-DTA investigations of a new chlorocadmate templated by 1-methylimidazolium

Author information +
History +
PDF

Abstract

Chemical preparation, X-ray single crystal diffraction, thermal analysis, electrochemical measurements, IR, Raman and UV spectroscopic investigations of a novel organic-inorganic hybrid material(C4H7N2)CdCl3(H2O)(1) were described. 1-Methylimidazolium aquapentachlorocadmate(II) crystallized in the monoclinic system with P21/n space group. Its structure provided a new interesting example of infinite inorganic layers of [CdCl3(H2O)] n n centered by (–101) planes. The [CdCl5(H2O)] anions were interconnected by O―H···Cl hydrogen bonds. Acidic protons of the chloride group were transferred to the organic molecule, giving the singly-protonated cations. The ability of ions to form a spontaneous three-dimensional structure through O―H···Cl and N―H···Cl hydrogen bonds was fully utilized. These hydrogen bonds induced notable vibrational effects. IR and Raman spectra were reported and discussed on the basis of group theoretical analysis and on quantum chemical density theory(DFT) calculation. The molecular HOMO-LUMO compositions and their respective energy gaps were also drawn to explain the activity of our compound. The role of the intermolecular interaction in this crystal was analyzed. The optical study was also investigated by UV-Vis absorption spectrum. Thermal analysis reveals the hydrous character of the compound. Cyclic voltammetry was studied to evaluate the spectral and structural changes accompanying electron transfer.

Keywords

Chlorocadmate(II) / X-Ray diffraction / Thermal analysis(TG-DTA) / Vibrational study / Density functional theory calculation / Cyclic voltammetry

Cite this article

Download citation ▾
Melek Hajji, Taha Guerfel. Crystal structure, vibrational studies, optical properties and TG-DTA investigations of a new chlorocadmate templated by 1-methylimidazolium. Chemical Research in Chinese Universities, 2016, 32(2): 253-260 DOI:10.1007/s40242-016-5404-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma S., Zhou H. C. Chem. Commun., 2010, 46: 44.

[2]

Murray L. J., Dinca M., Long J. R. Chem. Soc. Rev., 2009, 38: 1294.

[3]

Kuppler R. J., Timmons D. J., Fang Q. R., Li J. R., Makal T. A., Young M. D., Yuan D., Zhao D., Zhuang W., Zhou H. C. Coord. Chem. Rev., 2009, 253: 3042.

[4]

Wang J., Luo X., Yuan Y., Zhang L. Chem. Res. Chinese Universities, 2015, 31(4): 503.

[5]

Takaishi S., Hosoda M., Kajiwara T., Miyasaka H., Yamashita M., Nakanishi Y., Kitagawa Y., Yamaguchi K., Kobayashi A., Kitagawa H. Inorg. Chem., 2008, 48: 9048.

[6]

Kitagawa S., Kitaura R. Angew. Chem., Int. Ed. Eng., 2004, 43: 2334.

[7]

Smida M., Litaiem H., Dammak M., Garcia-Granda S. Chem. Res. Chinese Universities, 2015, 31(1): 16.

[8]

Kahn O. Acc. Chem. Res., 2000, 33: 647.

[9]

Ma T. H., Yu J. H., Ye L., Xu J. Q., Wang T. G., Lu C. H. J. Mol. Struct., 2003, 47: 654.

[10]

L., Mu B., Li N., Huang R. Chem. Res. Chinese Universities, 2015, 31(5): 712.

[11]

Perpétuo G. J., Janczak J. J. Mol. Struct., 2013, 1041: 127.

[12]

Cheng J., Xie J., Lou X. Bioorg. Med. Chem. Lett., 2005, 15: 267.

[13]

Sheng J., Nguyen P. T. M., Baldeck J. D., Olsson J., Marquis R. E. Arch. Oral Bio., 2006, 51: 1015.

[14]

Nakano H., Inoue T., Kawasaki N., Miyataka H., Matsumoto H., Taguchi T., Inagaki N., Nagai H., Satoh T. Bioorg. Med. Chem., 2000, 8: 373.

[15]

Huang X. C., Zhang J. P., Lin Y. Y., Yu X. L., Chen X. M. Chem. Commun., 2004, 9: 1100.

[16]

Abuskhuna S., McCann M., Briody J., Devereux M., McKee V. Polyhedron, 2004, 23: 1731.

[17]

Gong Y., Hu C., Li H., Pan W., Niu X., Pu Z. J. Mol. Struct., 2005, 740: 153.

[18]

Bourdeau C. L., Chanh N. B., Duplessix R., Gallois B. J. Phys. Chem. Solids, 1993, 349: 54.

[19]

Puget R., Jannin M., de Brauer C., Perret R. Acta Cryst., 1991, C47: 1803.

[20]

Amamou W., Feki H., Chniba-Boudjada N., Zouari F. J. Mol. Struct., 2014, 169: 1059.

[21]

Xu R. Acta Cryst., 2009, E65: m951.

[22]

Glaoui M., Zeller M., Jeanneau E., BenNasra C. Acta Cryst., 2010, E66: m895.

[23]

Xu M., Liu Z., Fan R., Gao S., Chen S., Yang Y. Chem. Res. Chinese Universities, 2014, 30(5): 720.

[24]

Hajji M., Gharbi A., Guerfel T. J. Inorg. Organomet. Polym., 2014, 24: 766.

[25]

Harms K., Wocadlo S. XCAD4, 1995, Marburg: University of Marburg.

[26]

Sheldrick G. M. Acta Cryst., 2008, A64: 112.

[27]

Lindsay E. R., Jeffrey H. P., Richard L. M. J. Chem. Theory Comput., 2008, 4(7): 1029.

[28]

Liu C., Zhang D., Gao M., Liu S. Chem. Res. Chinese Universities, 2015, 31(4): 597.

[29]

James W. H., Buchanan E. G., Müller C. W., Dean J. C., Kosenkov D., Slipchenko L. V., Guo L., Reidenbach A. G., Gellman S. H., Zwier T. S. J. Phys. Chem., 2011, A115: 13783.

[30]

Young D. C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems(Electronics), 2001, New York: John Wiley and Sons, Academic Press.

[31]

Sert Y., Al-Turkistani A. A., Al-Deeb O. A., El-Emam A. A., Ucun F., Çirak Spectrochim. Acta A, 2014, 120: 97.

[32]

Frish A., Nielsen A. B., Holder A. J. Gauss View User Manual, 2001, Pittsburg, PA: Gaussian Inc..

[33]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas, Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, Revision A.1, 2009, Wallingford CT: Gaussian Inc..

[34]

Jamròz M. H. Spectrochim. Acta Part A, 2013, 114: 220.

[35]

Baur W. H. Acta Cryst., 1974, B13: 1195.

[36]

Hachula B., Pedras M., Nowak M., Kusz J., Pentak D., Borek J. J. Serb. Chem. Soc., 2011, 76(2): 235.

[37]

Therrien B., Beauchamp A. L. Acta Cryst., 1993, C49: 1303.

[38]

Zhang S., Wang S., Wen Y., Jiao K. Molecules, 2003, 8: 866.

[39]

Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Applications in Inorganic Chemistry, 2009, Hoboken: Wiley.

[40]

Haile S. M., Calkins P. M., Boysen D. J. Solid State Chem., 1998, 139: 373.

[41]

Socrates G. Infrared Characteristic Group Frequencies, 1980, New York: Wiley.

[42]

Coates J., Meyers R. A. Interpretation of Infrared Spectra: A Practical Approach, 2000, Chichester: John Wiley and Sons Ltd..

[43]

Silverstein M., Clayton Basseler G., Morill C. Spectrometric Identification of Organic Compounds, 1981, New York: Wiley.

[44]

Karabacak M., Ahin E. S., Çinar M., Erol I., Kurt M. J. Mol. Struct., 2008, 886: 148.

[45]

Zavadov I. A., Maklakov L. I., Atomvmyan E. G. Russ. Chem. Bull., 1998, 47: 293.

[46]

Furer V. L. J. Appl. Spectrosc., 1990, 53: 860.

[47]

Bellamy L. J. The Infrared Spectra of Complex Molecules, 1975, New York: Wiley.

[48]

Peesole R. L., Shield L. D., McWillam I. C. Modern Methods of Chemical Analysis, 1976.

[49]

Socrates G. IR and Raman Characteristics Group Frequencies Tables and Charts, 2001, Chichester: Wiley.

[50]

Schuster P., Zundel G., Sandorfy C. The Hydrogen Bond Recent Developments in Theory and Experiments, 1976, Amsterdam, New York, Oxford: North-Holland Publishing Company.

[51]

Geffrey G. A. An Introduction to Hydrogen Bonding, 1977, Oxford: Academic Press.

[52]

Fleming I. Frontier Orbitals and Organic Chemical Reactions, 1976, New York: John Wiley and Sons.

[53]

Fukui K. Science, 1982, 218: 747.

[54]

Padmaja L., Ravikumar C., Sajan D., Joe I. H., Jayakumar V. S., Pettit G. R., Nielsen O. F. J. Raman Spectrosc., 2009, 40: 419.

[55]

Ravikumar C., Joe I. H., Jayakumar V. S. Chem. Phys. Lett., 2008, 460: 552.

[56]

Fleming I. Frontier Orbitals and Organic Chemical Reactions, 1976, New York: Wiley and Sons.

[57]

Lee S. K., Choi H. S. Bull. Korean Chem. Soc., 2001, 22: 463.

[58]

Deveci P., Taner B., Klllç Z., Solak A. O., Arslan U., Özcan E. Polyhedron, 2011, 30: 1726.

[59]

Torres E. L., Mendiola M. A. Polyhedron, 2005, 24: 1435.

[60]

Feng X., Li Z. F., Xue S. F., Tao Z., Zhu Q. J., Zhang Y. Q., Liu J. X. Inorg. Chem., 2010, 49: 7638.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/