Effect of alkylpyrazinium counterions on the host-guest recognition based on dimethoxypillar[5]arenes

Lijing Liu , Lei Guo , Qiuhua Zhao , Yongkui Shan , Xiaojuan Liao

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 202 -206.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 202 -206. DOI: 10.1007/s40242-016-5402-5
Article

Effect of alkylpyrazinium counterions on the host-guest recognition based on dimethoxypillar[5]arenes

Author information +
History +
PDF

Abstract

In this work, we synthesized n-octylpyrazinium bromide(G-Br) and n-octylpyrazinium hexafluorophosphate(G-PF6) as model guests and studied their host-guest complexation with 1,4-dimethoxypillar[5]arene(DMP5A). Effect of alkylpyrazinium counterions on the host-guest recognition was investigated. Based on the 1H NOESY spectra, the binding site of DMP5A with G-PF6 is the same as that of DMP5A with G-Br. However, G-PF6 forms a stronger complex with DMP5A than G-Br, owing to that hexafluorophosphate forms weaker doubly inonic H-bonds with ammonium cation than bromide ion in chloroform, which leads to some aggregates that could be dissociated with the addition of DMP5A.

Keywords

Pillararene / Counterion / Host-guest recognition / Supramolecular chemistry

Cite this article

Download citation ▾
Lijing Liu, Lei Guo, Qiuhua Zhao, Yongkui Shan, Xiaojuan Liao. Effect of alkylpyrazinium counterions on the host-guest recognition based on dimethoxypillar[5]arenes. Chemical Research in Chinese Universities, 2016, 32(2): 202-206 DOI:10.1007/s40242-016-5402-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang F., Switek K. A., Gibson H. W. Chem. Commun., 2005, 29(29): 3655.

[2]

Cao J., Lu H., You X., Zheng Q., Chen C. Org. Lett., 2009, 11(19): 4446.

[3]

Harada A. Acc. Chem. Res., 2001, 34(6): 456.

[4]

Sun R., Xue C., Ma X., Gao M., Tian H., Li Q. J. Am. Chem. Soc., 2013, 135(16): 5990.

[5]

Zhang J., Ma P. Angew. Chem. Int. Ed., 2009, 48(5): 964.

[6]

Brunsveld L., Folmer B., Meijer E., Sijbesma R. Chem. Rev., 2001, 101(18): 4071.

[7]

De Greef T., Smulders M., Wolffs M., Schenning A., Sijbesma R., Meijer E. Chem. Rev., 2009, 109(11): 5687.

[8]

Liu S., Shukla A., Gadde S., Wagner B., Kaifer A., Isaacs L. Angew. Chem. Int. Ed., 2008, 47(14): 2657.

[9]

Huang Z., Yang L., Liu Y., Wang Z., Scherman O., Zhang X. Angew. Chem. Int. Ed., 2014, 53(21): 5351.

[10]

Liao X. J., Chen G. S., Liu X. X., Chen W. X., Chen F. E., Jiang M. Angew. Chem. Int. Ed., 2010, 49(26): 4409.

[11]

Nakahata M., Takashima Y., Yamaguchi H., Harada A. Nat. Commun., 2011, 2(3): 487.

[12]

Yamaguchi H., Kobayashi Y., Kobayashi R., Takashima Y., Hashidzume A., Harada A. Nat. Commun., 2012, 3(48): 19596.

[13]

Ogoshi T., Kanai S., Fujinami S., Yamagishi T. A., Nakamoto Y. J. Am. Chem. Soc., 2008, 130(15): 5022.

[14]

Cragg P. J., Sharma K. Chem. Soc. Rev., 2012, 41(2): 597.

[15]

Wang K., Yang Y., Zhang S. X., Chem J. Chinese Universities, 2012, 33(1): 1.

[16]

Xue M., Yang Y., Chi X., Zhang Z., Huang F. Acc. Chem. Res., 2012, 45(8): 1294.

[17]

Zhang H. C., Zhao Y. L. Chem. Eur. J., 2013, 19(50): 16862.

[18]

Yu G., Xue M., Zhang Z., Li J., Han C., Huang F. J. Am. Chem. Soc., 2012, 134(32): 13248.

[19]

Yao Y., Xue M., Chen J., Zhang M., Huang F. J. Am. Chem. Soc., 2012, 134(38): 15712.

[20]

Yu G., Zhou X., Zhang Z., Han C., Mao Z., Gao C., Huang F. J. Am. Chem. Soc., 2012, 134(47): 19489.

[21]

Yu G., Ma Y., Han C., Yao Y., Tang G., Mao Z., Gao C., Huang F. J. Am. Chem. Soc., 2013, 135(28): 10310.

[22]

Cao D., Kou Y., Liang J., Chen Z., Wang L., Meier H. Angew. Chem. Int. Ed., 2009, 48(51): 9721.

[23]

Li C., Shu X., Li J., Chen S., Han K., Xu M., Hu B., Yu Y., Jia X. J. Org. Chem., 2011, 76(20): 8458.

[24]

Zhang Z., Luo Y., Chen J., Dong S., Yu Y., Ma Z., Huang F. Angew. Chem. Int. Ed., 2011, 50(6): 1397.

[25]

Si W., Chen L., Hu X., Tang G., Chen Z., Hou J., Li Z. Angew. Chem. Int. Ed., 2011, 50(52): 12564.

[26]

Duan Q., Cao Y., Li Y., Hu X., Xiao T., Lin C., Pan Y., Wang L. J. Am. Chem. Soc., 2013, 135(28): 10542.

[27]

Shu X., Chen S., Li J., Chen Z., Weng L., Jia X., Li C. Chem. Commun., 2012, 48(24): 2967.

[28]

Shu X., Fan J., Li J., Wang X., Chen W., Jia X., Li C. Org. Biomol. Chem., 2012, 10(17): 3393.

[29]

Tan L., Zhang Y., Li B., Wang K., Zhang S., Tao Y., Yang Y. New J. Chem., 2014, 38(2): 845.

[30]

Han C., Ma F., Zhang Z., Xia B., Yu Y., Huang F. Org. Lett., 2010, 12(9): 436.

[31]

Strutt N., Zhang H., Giesener M., Lei J., Stoddart F. Chem. Commun., 2012, 48(11): 1647.

[32]

Li C., Chen S., Li J., Han K., Xu M., Hu B., Yu Y., Jia X. Chem. Commun., 2011, 47(40): 11294.

[33]

Sun S., Hu X., Chen D., Shi J., Dong Y., Lin C., Pan Y., Wang L. Polym. Chem., 2013, 7(7): 2224.

[34]

Liao X., Guo L., Chang J., Liu S., Xie M., Chen G. Macromol. Rapid Commun., 2015, 36(16): 1492.

[35]

Han C., Yu G., Zheng B., Huang F. Org. Lett., 2012, 14(7): 1712.

[36]

Gao L., Dong S., Zheng B., Huang F. Eur. J. Org. Chem., 2013, 20B(7): 1209.

[37]

Ogoshi T., Tanaka S., Yamagishi T., Nakamoto Y. Chem. Lett., 2011, 40(1): 9698.

[38]

Ni M., Guan Y., Wu L., Deng C., Hu X., Jiang J., Lin C., Wang L. Tetrahedron Lett., 2012, 53(47): 6409.

[39]

Ogoshi T., Ueshima N., Yamagishi T., Toyota Y., Matsumi N. Chem. Commun., 2012, 48(29): 3536.

[40]

Bahner C., Norton L. J. Am. Chem. Soc., 1950, 72(7): 2881.

[41]

Connors K. A. Binding Constants, 1987, New York: Wiley, 1398.

[42]

Ashton P., Ballardini R., Balzani V., Belohradsky M., Gandolfi M., Philp D., Prodi L., Raymo F., Reddington M., Spencer N., Stoddart J., Venturi M., Williams D. J. Am. Chem. Soc., 1996, 118(21): 4931.

[43]

Inoue Y., Yamamoto K., Wada T., Everitt S., Gao X., Hou Z., Tong L., Jiang S., Wu H. J. Chem. Soc. Perkin Trans. 2, 1998, 4: 1807.

[44]

Patricia A., Claire R. A., Richard P. Chem. Soc. Rev., 2015, 44(5): 1257.

[45]

Steiner T. Angew. Chem. Int. Ed., 2002, 41(1): 48.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/