Structural and morphological modulation of BiOCl visible-light photocatalyst prepared via an in situ oxidation synthesis

Jianmin Wang , Feng Cao , Ruiping Deng , Lijian Huang , Song Li , Jiajia Cai , Xin Lü , Gaowu Qin

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 338 -342.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 338 -342. DOI: 10.1007/s40242-016-5397-y
Article

Structural and morphological modulation of BiOCl visible-light photocatalyst prepared via an in situ oxidation synthesis

Author information +
History +
PDF

Abstract

The evolution of morphology and heterostructure of BiOCl was investigated during an in situ oxidation reaction. Morphology and structure transformation of regular 2D nanoflake, 0D nanosphere or 3D nanoflower was achieved by adjusting the ratio of reagent concentration or reaction temperature, respectively. The enhanced photocatalytic degradation ability and the photocurrent intensity of BiOCl nanomaterials may be attributed to the improved degree of crystallinity and the formation of Bi/BiOCl heterostructure. The photocurrent density of Schottky battery was increased due to enhancing the optical pathway and assisting during charge separation. Crystallinity also contributed to the improvement of the photoelectric conversion efficiency and reduction of the recombination rate of photogenerated electron-hole pairs.

Keywords

Heterostructure / Nanomaterial / In situ oxidation synthesis / Photocatalyst

Cite this article

Download citation ▾
Jianmin Wang, Feng Cao, Ruiping Deng, Lijian Huang, Song Li, Jiajia Cai, Xin Lü, Gaowu Qin. Structural and morphological modulation of BiOCl visible-light photocatalyst prepared via an in situ oxidation synthesis. Chemical Research in Chinese Universities, 2016, 32(3): 338-342 DOI:10.1007/s40242-016-5397-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fujishima A., Honda K. Nature, 1972, 238: 37.

[2]

María D H.-a.-A., Fernando F., Silvia S.-a., Juan M C.o.r.o.n.a.d.o. Energy Environ. Sci., 2009, 2: 1231.

[3]

Hoffmann M. R., Martin S. T., Choi W. Y., Bahnemann D. W. Chem. Rev., 1995, 95: 69.

[4]

Yuan Y. P., Ruan L. W., Barber J., Loo S. C. J., Xue C. Energy Environ. Sci., 2014, 7: 3934.

[5]

Kronawitter C. X., Zegkinoglou I., Shen S. H., Liao P., Cho I. S., Zandi O., Liu Y. S., Lashgari K., Westin G., Guo J. H., Himpsel F. J., Carter E. A., Zheng X. L., Hamann T. W., Koel B. E., Mao S. S., Vayssieres L. Energy Environ. Sci., 2014, 7: 3100.

[6]

Marschall R. Adv. Funct. Mater., 2014, 24: 2421.

[7]

Mayer M. T., Lin Y., Yuan G., Wang D. Acc. Chem. Res., 2013, 46: 1558.

[8]

Keller N., Ducamp M. N., Robert D., Keller V. Chem. Rev., 2013, 113(7): 5029.

[9]

Wang Z. Y., Huang B. B., Dai Y., Wang P., Zheng Z. K., Cheng H. F. Z. Kristallogr., 2010, 225: 520.

[10]

Wang H. Z., Liu N., Lu J., Yao S. W., Jiang S. S., Zhang W. G. Chem. Res. Chinese Universities, 2015, 31(5): 846.

[11]

Xiong J. Y., Jiao Z. B., Lu G. X., Ren W., Ye J. H., Bi Y. P. Chem. Eur. J., 2013, 19: 9472.

[12]

Li J., Yu Y., Zhang L. Z. Nanoscale, 2014, 6: 8473.

[13]

Chang C., Zhu L. Y., Fu Y., Chu X. L. Chem. Eng. J., 2013, 233: 305.

[14]

Cheng H. F., Huang B. B., Dai Y. Nanoscale, 2014, 6: 2009.

[15]

Kong L., Jiang Z., Lai H. H. C., Xiao T. C., Edwards P. P. Prog. Nat. Sci. Mater., 2013, 23: 286.

[16]

Huang H. Q., Wu J. J., Lin X. P., Zhou Z. J. Alloys. and Compd., 2014, 509: 764.

[17]

Weng S. X., Chen B. B., Xie L. Y., Zheng Z. Y., Liu P. J. Mater. Chem. A., 2013, 1: 3068.

[18]

Yu Y., Cao C. Y., Liu H., Li P., Wei F. F., Jiang Y., Song W. G. J. Mater. Chem. A, 2014, 2: 1677.

[19]

Gao M. C., Zhang D. F., Pu X. P., Ding K. Y., Li H., Zhang T. T., Ma H. Y. Sep. Purify. Techel., 2015, 149: 288.

[20]

Zhao Y. S., Li J. G., Fang F., Chu N. K., Mac H., Yang X. J. Dalton. Trans., 2012, 41: 12175.

[21]

Koa H. H., Yang G. L., Wang M. C., Zhao X. J. Ceram. Int., 2014, l40: 13953.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/