Shape-controlled synthesis of Fe3O4 nanocrystals with incontinuous multicavities

Conghong Zhan , Rongmin Cheng , Beibei Fang , Lijun Zhao

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 159 -164.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 159 -164. DOI: 10.1007/s40242-016-5383-4
Article

Shape-controlled synthesis of Fe3O4 nanocrystals with incontinuous multicavities

Author information +
History +
PDF

Abstract

In the solvothermal synthesis process, the effect of NaOH dosages of from 0.3 g to 4.0 g on the morphology evolution(from nanoparticles to octahedra) of Fe3O4 crystals was carefully investigated. Meanwhile, the growth process of Fe3O4 crystals at different reaction time was also investigated. Furthermore, it has been found that the particle size and crystallinity of Fe3O4 crystals can be controlled by the dosages of NaOH. In this paper, the increases of both the reaction time and the NaOH concentrations correspond to a minimization process of surface energy for Fe3O4 crystals. During the synthesis process, the addition of N2H4·H2O and ethylene glycol in the magnetite not only facilitated the narrow distribution of particle size but also contributed to the formation of incontinuous multicavities with a diameter of about 5 nm.

Keywords

Fe3O4 nanocrystal / Incontinuous multicavity / Magnetic property

Cite this article

Download citation ▾
Conghong Zhan, Rongmin Cheng, Beibei Fang, Lijun Zhao. Shape-controlled synthesis of Fe3O4 nanocrystals with incontinuous multicavities. Chemical Research in Chinese Universities, 2016, 32(2): 159-164 DOI:10.1007/s40242-016-5383-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang C., Daimon H., Sun S. H. Nano Lett., 2009, 9(4): 1493.

[2]

Lee S. H., Yu S. H., Lee J. E., Jin A. H., Lee D. J., Lee N., Jo H., Shin K., Ahn T. Y., Kim Y. W., Choe H., Sung Y. E., Hyeon T. Nano Lett., 2013, 13(9): 4249.

[3]

Chalasani R., Vasudevan S. ACS Nano, 2013, 7(5): 4093.

[4]

He C. N., Wu S., Zhao N. Q., Shi S. H., Liu E. Z., Li J. J. ACS Nano, 2013, 7(5): 4459.

[5]

Sun C. R., Du K., Fang C., Bhattarai N., Veiseh O., Kievit F., Stephen Z., Lee D. H., Ellenbogen R. G., Ratner B. ACS Nano, 2010, 4(4): 2402.

[6]

Xiao L. S., Li J. T., Brougham D. F., Fox E. X., Feliu N., Bushmelev A., Schmidt A., Mertens N., Kiessling F., Valldor M., Fadeel B., Mathur S. ACS Nano, 2011, 5(8): 6315.

[7]

Tian Y., Yu B. B., Li X., Li K. J. Mater. Chem., 2011, 21: 2476.

[8]

Cheong S., Ferguson P., Feindel K. W., Hermans I. F., Callaghan P. T., Meyer C., Slocombe A., Su C. H., Cheng F. Y., Yeh C. S., Ingham B., Toney M. F., Tilley R. D. Angew. Chem. Int. Ed., 2011, 50: 4206.

[9]

Huang J., Chen W. M., Zhao W., Li Y. Q., Li X. G., Chen C. P. J. Phys. Chem. C, 2009, 113(28): 12067.

[10]

Jia L. C., Harbauer K., Bogdanoff P., Ellmer K., Fiechter S. J. Mater. Sci. Technol., 2015, 31: 655.

[11]

Bao N. Z., Shen L. M., Wang Y. H., Padhan P., Gupta A. J. Am. Chem. Soc., 2007, 129(41): 12374.

[12]

Yin J. Z., Yu Z. N., Gao F., Wang J. J., Pang H. A., Lu Q. Y. Angew. Chem. Int. Ed., 2010, 49: 6328.

[13]

Liu F., Gao P. J., Zhang H. R., Tian J. F., Xiao C. W., Shen C. M., Li J. Q., Gao H. J. Adv. Mater., 2005, 17: 1893.

[14]

Chin K. C., Chong G. L., Poh C. K., Van L. H., Sow C. H., Lin J. Y., Wee A. T. S. J. Phys. Chem. C, 2007, 111(26): 9136.

[15]

Zeng S. Y., Tang K. B., Li T. W., Liang Z. H., Wang D., Wang Y. K., Zhou W. W. J. Phys. Chem. C, 2007, 111(28): 10217.

[16]

Jia C. J., Sun L. D., Luo F., Han X. D., Heyderman L. J., Yan Z. G., Yan C. H., Zheng K., Zhang Z., Takano M. J. Am. Chem. Soc., 2008, 130(50): 16968.

[17]

Dong W. J., Li X., Shang L., Zheng Y. Y., Wang G., Li C. R. Nanotechnology, 2009, 20(3): 035601.

[18]

Sheparovych R., Sahoo Y., Motornov M., Wang S.M., Luo H., Prasad P. N., Sokolov I., Minko S. Chem. Mater., 2006, 18(3): 591.

[19]

Zhu L. P., Xiao H. M., Zhang W. D., Yang G., Fu S. Y. Cryst. Growth. Des., 2008, 8(3): 957.

[20]

Han S. C., Hu L. F., Liang Z. Q., Wageh S., Al-Ghamdi A. A., Chen Y. S., Fang X. S., Tian J. G. Adv. Funct. Mater., 2014, 24: 5719.

[21]

Song R., Wang H. J., Feng S. H. Chem. Res. Chinese Universities, 2012, 28(4): 577.

[22]

Fang X. S., Zhang L. D. J. Mater. Sci. Technol., 2006, 22(1): 1.

[23]

Zhang R., Tian Y., Lu C., Liu L.Q., Liu X. M. Chem. Res. Chinese Universities, 2014, 30(2): 343.

[24]

Fan T., Pan D. K., Zhang H. Ind. Eng. Chem. Res., 2011, 50(15): 9009.

[25]

Zhu M. Y., Diao G. W. J. Phys. Chem. C, 2011, 115(39): 18923.

[26]

Peng Z.A., Peng X.G. J. Am. Chem. Soc., 2001, 123(7): 1389.

[27]

Peng Z. A., Peng X. G. J. Am. Chem. Soc., 2002, 124(13): 3343.

[28]

Zhao L. J., Zhang H. J., Xing Y., Song S. Y., Yu S. Y., Shi W. D., Guo X. M., Yang J. H., Lei Y. Q., Cao F. Chem. Mate., 2007, 20(1): 198.

[29]

Xiong Y., Ye J., Gu X. Y., Chen Q. W. J. Phys. Chem. C, 2007, 111(19): 6998.

[30]

Wang X. Z., Zhao Z. B., Qu J. Y., Wang Z. Y., Qiu J. S. Cryst. Growth Des., 2010, 10(7): 2863.

[31]

Cao M. H., Liu T. F., Gao S., Sun G. B., Wu X. L., Hu C. W., Wang Z. L. Angew. Chem. Int. Ed., 2005, 44: 4197.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/