CeO2/TiO2 monolith catalyst for the selective catalytic reduction of NO x with NH3: Influence of H2O and SO2

Fan Zhang , Gang Tian , Hongmei Wang , Hongchang Wang , Chen Zhang , Yutao Cui , Jiayu Huang , Yun Shu

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 461 -467.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 461 -467. DOI: 10.1007/s40242-016-5374-5
Article

CeO2/TiO2 monolith catalyst for the selective catalytic reduction of NO x with NH3: Influence of H2O and SO2

Author information +
History +
PDF

Abstract

The influences of H2O and SO2 on CeO2/TiO2 monolith catalyst for the selective catalytic reduction(SCR) of NO x with NH3 were investigated. In the absence of SO2, H2O inhibited the SCR activity, which might be ascribed to the competitive adsorption of H2O and reactants such as NH3 and/or NO x. SO2 could promote the SCR activity of CeO2/TiO2 monolith catalyst in the absence of H2O, while in the presence of H2O it speeded the deactivation. During the SCR reaction in SO2-containing gases, Ce(III) sulfate species formed on the catalyst surface, resulting in the enhancement of Brønsted acidity. This played a significant role in the enhanced SCR activity. However, in the presence of both H2O and SO2, a large amount of ammonium-sulfate salts formed on the catalyst surface, which resulted in the blocking of catalyst pores and deactivated the catalyst. In addition, the NO x conversion was more sensitive to gas hourly space velocity in the presence of H2O than in the absence of H2O. The relatively high space velocity would result in a higher formation rate of ammonium-sulfate salts on per unit catalyst in the presence of H2O and SO2, which caused obvious deactivation of Ce/TiO2 monolith catalyst.

Keywords

CeO2/TiO2 catalyst / Selective catalytic reduction(SCR) / Sulfur dioxide / Water

Cite this article

Download citation ▾
Fan Zhang, Gang Tian, Hongmei Wang, Hongchang Wang, Chen Zhang, Yutao Cui, Jiayu Huang, Yun Shu. CeO2/TiO2 monolith catalyst for the selective catalytic reduction of NO x with NH3: Influence of H2O and SO2. Chemical Research in Chinese Universities, 2016, 32(3): 461-467 DOI:10.1007/s40242-016-5374-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Busca G., Lietti L., Ramis G., Berti F. Appl. Catal. B: Environ., 1998, 18: 1.

[2]

Kobayashi M., Miyoshi K. Appl. Catal. B: Environ., 2007, 72: 253.

[3]

Phil W. S., Kwang H. P., Sung C. H. J. Ind. Eng. Chem., 2010, 16: 283.

[4]

Zhu Z. P., Liu Z. Y., Niu H. X., Xie Y. N. J. Catal., 2001, 197: 6.

[5]

Choo S. T., Lee Y. G., Nam I. S., Lee G. B. Appl. Catal. A: Gen., 2000, 200: 177.

[6]

Kijlstra W. S., Biervliet M., Poels E. K., Bliek A. Appl. Catal. B: Environ., 1998, 16: 327.

[7]

Wu B. J., Xiao P., Liu X. Q. Chem. Res. Chinese Universities, 2010, 26(6): 1002.

[8]

Magnussona M., Fridell E., Ingelstenc H. H. Appl. Catal. B: Environ., 2012, 111: 20.

[9]

Huang Z. G., Zhu Z. P., Liu Z. Y., Niu H. X. J. Catal., 2003, 214: 213.

[10]

Long R. Q., Yang R. T. Appl. Catal. B: Environ., 2000, 24: 13.

[11]

Maqbool M. S., Pullur A. K., Ha H. P. Appl. Catal. B: Environ., 2014, 152: 28.

[12]

Gu T., Liu Y., Weng X., Wang H. Q., Wu Z. B. Catal. Commun., 2010, 12: 310.

[13]

Yang S. J., Guo Y. F., Chang H. Z., Ma L., Qu Z., Yan N. Q., Wang C. Z., Li J. H. Appl. Catal. B: Environ., 2013, 136: 19.

[14]

Shu Y., Aikebaier T., Quan X. Appl. Catal. B: Environ., 2014, 150: 630.

[15]

Hou Y. Q., Huang Z. G., Guo S. J. Catal. Commun., 2009, 10: 1538.

[16]

Xie G., Liu Z. Y., Zhu Z. P., Zhao Q. S. J. Catal., 2004, 224: 42.

[17]

Noronha F. B., Fendley E. C., Soares R. S., Alvares W. E., Resasco D. E. Chem. Eng.^J., 2001, 82: 21.

[18]

Zhang Y. M., Zhang H., Zhou L., Han W. Chem. Res. Chinese Universities, 2014, 30(2): 279.

[19]

Smirnov M. Y., Kalinkin A. V., Pashis A. V., Sorokin A. M. Phys. Chem. B, 2005, 109: 11712.

[20]

Dupin J. C., Gonbeau D., Vinatier P., Levasseur A. Phys. Chem. Chem. Phys., 2000, 2: 1319.

[21]

Kang M., Park E. D., Kim J. M., Yie J. E. Appl. Catal. A: Gen., 2007, 327: 261.

[22]

Liu F. D., Asakura K., He H., Shan W. P., Shi X. Y. Appl. Catal. B: Environ., 2011, 103: 369.

[23]

Kwon D. W., Nam K. B., Hong S. C. Appl. Catal. B: Environ., 2015, 166: 37.

[24]

Yu J., Guo F., Wang Y. L., Zhu J. H., Gao S. Q., Xu G. W. Appl. Catal. B: Environ., 2010, 95: 160.

[25]

Topsøe N. Y. Science, 1994, 265: 1217.

[26]

Takagi M., Kawai T., Soma M., Onishi T. J. Phys. Chem., 1976, 80: 430.

[27]

Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 1986, New York: Wiley.

[28]

Huang J. H., Tong Z. Q., Huang Y., Zhang J. F. Appl. Catal. B: Environ., 2008, 78: 309.

[29]

Wang Y. L., Li X. X., Zhan L. Ind. Eng. Chem. Res., 2015, 54: 2274.

[30]

Wu Z. B., Jin R. B., Wang H. Q., Liu Y. Catal. Commun., 2009, 10: 935.

[31]

Long R. Q., Yang R. T. J. Catal., 2002, 207: 224.

[32]

Guan B., Lin H., Zhu L. J. Phys. Chem. C, 2011, 115: 12850.

[33]

Shu Y., Wang H. C., Zhu J. W., Zhang F. Chem. Res. Chinese Universities, 2014, 30(6): 1005.

[34]

Piazzesi G., Kröcher O., Elsener M., Wokaun A. Appl. Catal. B: Environ., 2006, 65: 55.

[35]

Huang Z. G., Zhu Z. P., Liu Z. Y. Appl. Catal. B: Environ., 2002, 39: 361.

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/