Syntheses, structures and magnetic properties of two coordination polymers based on 2,2-biphenyldicarboxylate ligand

Qingfen Zhang , Zhongyuan Zhou , Xuan Wang , Jing Lu

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 165 -171.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 165 -171. DOI: 10.1007/s40242-016-5365-6
Article

Syntheses, structures and magnetic properties of two coordination polymers based on 2,2-biphenyldicarboxylate ligand

Author information +
History +
PDF

Abstract

Two coordination polymers {[Co3L3(Me2NH)2]·(Me2NH)} n(1) and [CuL(bpy)] n(2)(L=2,2′-biphenyl dicarboxylate ion, bpy=4,4′-bipyridine) were obtained and characterized. Compound 1 was synthesised via solvothermal method, with the L ligands adopting syn-syn-μ 2-η 1:η 1- and μ 2-η 2-coordination modes and Co(II) centers being linked to form a 1D coordination chain with trinuclear Co3 cluster as sub-units. Compound 2 was synthesized at room temperature, with the L ligand chelating the Cu(II) centers to form a 1D chain, which was further linked by the auxiliary 4,4′-bpy ligand to form a 3D coordination network. The results of variable temperature susceptibility studies reveal that there were ferromagnetic and antiferromagnetic interactions between the paramagnetic metal centers in compounds 1 and 2, respectively.

Keywords

Coordination polymer / Crystal structure / Magnetic property

Cite this article

Download citation ▾
Qingfen Zhang, Zhongyuan Zhou, Xuan Wang, Jing Lu. Syntheses, structures and magnetic properties of two coordination polymers based on 2,2-biphenyldicarboxylate ligand. Chemical Research in Chinese Universities, 2016, 32(2): 165-171 DOI:10.1007/s40242-016-5365-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheng X. N., Zhang W. X., Chen X. M. J. Am. Chem. Soc., 2007, 129: 15738.

[2]

Wang X. Y., Wang Z. M., Gao S. Chem. Commun., 2008, 281.

[3]

Ma L. F., Wang L. Y., Wang Y. Y., Batten S. R., Wang J. G. Inorg. Chem., 2009, 48: 915.

[4]

Mondal K. C., Kostakis G. E., Lan Y. H., Anson C. E., Powell A. K. Inorg. Chem., 2009, 48: 9205.

[5]

Pachfule P., Das P., Poddar P., Banerjee R. Inorg. Chem., 2011, 50: 3855.

[6]

Halder G. J., Kepert C. J., Moubaraki B., Murray K. S., Cashion J. D. Science, 2002, 298: 1762.

[7]

Zheng Y. Z., Xue W., Tong M. L., Chen X. M., Grandjean F., Long G. J. Inorg. Chem., 2008, 47: 4077.

[8]

Lama P., Aijaz A., Sanudo E. C., Bharadwaj P. K. Cryst. Growth Des., 2010, 10: 283.

[9]

Oullette W., Prosvirin A. V., Whitenack K., Dunbar K. R., Zubieta J. Angew. Chem. Int. Ed., 2009, 48: 2140.

[10]

Mereacre V. M., Ako A. M., Clerac R., Wernsdorfer W., Filoti G., Bartolome J., Anson C. E., Powell A. K. J. Am. Chem. Soc., 2007, 129: 9248.

[11]

Mishra A., Tasiopoulos A. J., Wernsdorfer W., Moushi E. E., Moulton B., Zaworotko M. J., Abboud K. A., Christou G. Inorg. Chem., 2008, 47: 4832.

[12]

Zeng M. H., Hu S., Chen Q., Xie G., Shuai Q., Gao S. L., Tang L. Y. Inorg. Chem., 2009, 48: 7070.

[13]

Li Y. X., Xue M., Huang L., Chen S. R., Qiu S. L. Chem. Res. Chinese Universities, 2013, 29(4): 611.

[14]

Hennigar T. L., MacQuarrie D. C., Losier P., Roger R. D., Zaworkto M. J. Chem. Commun., 1997, 972.

[15]

Jung O. S., Park S. H., Kim K. M., Jang H. G. Inorg. Chem., 1998, 37: 5781.

[16]

Matsumoto N., Motoda Y., Matsuo T., Nakashima T., Re N., Dahan F., Tuchagues J. P. Inorg. Chem., 1999, 38: 1165.

[17]

Pan L., Huang X. Y., Li J., Wu Y. G., Zheng N. W. Angew. Chem. Int. Ed., 2000, 39: 527.

[18]

Sun D. F., Cao R., Sun Y. Q., Bi W. H., Yuan D. Q., Shi Q., Li X. Chem. Commun., 2003, 1528.

[19]

Dalgarno S. J., Hardie M. J., Raston C. L. Cryst. Growth Des., 2004, 4: 227.

[20]

Zhang G., Yang G., Chen Q., Ma J. S. Cryst. Growth Des., 2005, 5: 661.

[21]

Feng P., Bu X., Stucky G. D. Nature, 1997, 388: 735.

[22]

Wang X. F., Zhang Y. B., Xue W., Qia X. L., Chen X. M. Cryst. Eng. Comm., 2010, 12: 3834.

[23]

Rao C. N. R., Natarajan S., Vaidhyanathan R. Angew. Chem. Int. Ed., 2004, 43: 1466.

[24]

Zaworotko M. J. Angew. Chem. Int. Ed., 2000, 39: 3052.

[25]

Delgado-Friedrichs O., O’Keeffe M., Yaghi O. M. Acta Crystallogr., 2003, A59: 22.

[26]

Robin A. Y., Fromm K. M. Coord. Chem. Rev., 2006, 250: 2127.

[27]

Tian H., Jia Q. X., Gao E. Q., Wang Q. L. Chem. Commun., 2010, 46: 5349.

[28]

Zhuang W. J., Sun H. L., Xu H. B., Wang Z. M., Gao S., Jin L. P. Chem. Commun., 2010, 46: 4339.

[29]

Sheldrich G. M. SHELXL 97, Program for Crystal Structure Refinement, 1997, Göttiingen: University of Göttiingen.

[30]

Ma Q., Zhu M. L., Lu L. P., Feng S. S., Wang T. W. Dalton Trans., 2010, 5877.

[31]

Feller R. K., Cheetham A. K. Dalton Trans., 2008, 2034.

[32]

Huang F. P., Tian J. L., Gu W., Liu X., Yan S. P., Liao D. Z., Cheng P. Cryst. Growth Des., 2010, 10: 1145.

[33]

Gu Z. G., Yang Q. F., Liu W., Song Y., Li Y. Z., Zuo J. L., You X. Z. Inorg. Chem., 2006, 45: 8895.

[34]

Niu C. Y., Zheng X. F., Wan X. S., Kou C. H. Cryst. Growth Des., 2011, 11: 2874.

[35]

Liu J. Q., Liu B., Wang Y. Y., Liu P., Yang G. P., Liu R. T., Shi Q. Z., Batten S. R. Inorg. Chem., 2010, 49: 10422.

[36]

Xiao D. R., Zhang G. J., Liu J. L., Fan L. L., Yuan R. M., Tong L. Dalton Trans., 2011, 40: 5680.

[37]

Li H. J., Yao H. C., Zhang E. P., Jia Y. Y., Hou H. W., Fan Y. T. Dalton Trans., 2011, 40: 9388.

[38]

Shit S., Chakraborty J., Das A., Yap G. P. A., Fallah M. S. E.I., Mitra S. Struct. Chem., 2007, 18: 317.

[39]

Du M., Guo Y. M., Bu X. H., Ribas J. Eur. J. Inorg. Chem., 2004, 3228.

[40]

Sakiyama H., Suzuki T., Ono K., Ito R., Watanabe Y., Yamasaki M., Mikuriya M. Inorg. Chim. Acta, 2005, 35: 1897.

[41]

Goodenough J. B. J. Phys. Chem. Solids, 1958, 6: 287.

[42]

Kanamori J. J. Phys. Chem. Solids, 1959, 10: 87.

[43]

Liu S. J., Xue L., Hu T. L., Bu X. H. Dalton Trans., 2012, 41: 6813.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/