Sulfonated polyarylene ether sulfone(SPES) and Ga2O3 based hybrid polymer electrolyte membrane for direct methanol fuel cells(DMFCs)

Shoulei Miao , Haiqiu Zhang , Zhimin Chen , Bin Wang , Xiaobo Li , Yiqun Wu

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 318 -324.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 318 -324. DOI: 10.1007/s40242-016-5362-9
Article

Sulfonated polyarylene ether sulfone(SPES) and Ga2O3 based hybrid polymer electrolyte membrane for direct methanol fuel cells(DMFCs)

Author information +
History +
PDF

Abstract

Novel hybrid polymer electrolyte membrane, based on sulfonated polyarylene ether sulfone(SPES) and Ga2O3, was prepared and characterized. The structure of the composite membrane substantially modified the properties of SPES in terms of thermal stability, mechanical properties, methanol permeability, and so on. The structure and performance of the hybrid membrane were investigated by means of Fourier transform infrared spectrophotometry( FTIR), scanning electron microscopy(SEM), electrochemical impedance spectroscopy(EIS), thermal gravimetric analysis(TGA), and water uptake(WU) test. The hybrid polymer electrolyte membrane containing a certain quantity of Ga2O3 was found to gain good proton transport characteristics, particularly at relatively high temperatures. In addition, this membrane reduced methanol permeability and improved thermal stability in comparison to an unfilled reference membrane. The hybrid membrane was found suitably to be used as a polymer electrolyte membrane(PEM) in direct methanol fuel cells(DMFCs).

Keywords

Proton exchange membrane / Property / Sulfonated polyarylene ether sulfone / Hybrid membrane

Cite this article

Download citation ▾
Shoulei Miao, Haiqiu Zhang, Zhimin Chen, Bin Wang, Xiaobo Li, Yiqun Wu. Sulfonated polyarylene ether sulfone(SPES) and Ga2O3 based hybrid polymer electrolyte membrane for direct methanol fuel cells(DMFCs). Chemical Research in Chinese Universities, 2016, 32(2): 318-324 DOI:10.1007/s40242-016-5362-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee J. R., Kim N. Y., Lee M. S., Lee S. Y. J. Membr. Sci., 2011, 367(1/2): 265.

[2]

Rhee C. H., Kim H. K., Chang H., Lee J. S. Chem. Mater., 2005, 17(7): 1691.

[3]

Gurau B., Smotkin E. S. J. Power Sources, 2002, 112(2): 339.

[4]

Dong B., Gwee L., Cruz D. S. L., Winey K. I., Elabd Y. A. Nano Lett., 2010, 10(9): 3785.

[5]

Heinzel A., Barragan V. M. J. Power Sources, 1999, 84(1): 70.

[6]

Itoh T., Hirai K., Tamura M., Uno T., Kubo M., Aihara Y. J. Power Sources, 2008, 178(2): 627.

[7]

Gil M., Ji X. L., Li X. F., Na H., Hampsey J. E., Lu Y. F. J. Membr. Sci., 2004, 234(1/2): 75.

[8]

Wang F., Chen T. L., Xu J. P. Macromol. Chem. Phys., 1998, 199: 1421.

[9]

Mikhailenko S. D., Zaidi S. M., Kaliaguine S. Catal. Today, 2001, 67: 225.

[10]

Mikhailenko S. D., Wang K., Kaliaguine S., Xing P., Robertson G. P., Guiver M. D. J. Membr. Sci., 2004, 233(1/2): 93.

[11]

Xu J. M., Ni H. Z., Wang S., Wang Z., Zhang H. X. J. Membr. Sci., 2015, 492: 505.

[12]

Changkhamchom S., Sirivat A. Solid State Ionics, 2014, 263: 161.

[13]

Yang J., Shen P. K., Varcoe J., Wei Z. J. Power Sources, 2009, 189(2): 1016.

[14]

Pan H. Y., Pu H. T., Jin M., Wan D. C., Chang Z. H. Polymer, 2010, 51: 2305.

[15]

Zhang H. Q., Li X. F., Zhao C. J., Fu T. Z., Shi Y. H., Na H. J. Membr. Sci., 2008, 308(1/2): 66.

[16]

Xue S., Yin G. P. Electro. Acta, 2006, 52: 847.

[17]

Wen J., Wilkes G. L. Chem. Mater., 1996, 8(8): 1667.

[18]

Mistry M. K., Choudhury N. R., Dutta N. K., Knott R., Shi Z., Holdcroft S. Chem. Mater., 2008, 20(21): 6857.

[19]

Mecheri B., Epifanio A. D., Di Vona M. L., Traversa E., Licoccia S., Miyayama M. J. Electrochem. Soc., 2006, 153(3): A463.

[20]

Di Vona M. L., Marani D., Epifanio A. D., Traversa E., Trombetta M., Licoccia S. Polymer, 2005, 46: 1754.

[21]

Feltz A., Gamsjager E. J. European Ceramic Society, 1998, 18(14): 2217.

[22]

Stanislowski M., Seeling U., Peck D. H., Woo S. K., Singheiser L., Hilpert K. Solid State Ionics, 2005, 176(35/36): 2523.

[23]

Baban C., Toyoda Y., Ogita M. Thin Solid Films, 2005, 484(1/2): 369.

[24]

Harwig T., Wubs G. J., Dtrksen G. J. Solid State Commun., 1976, 18(9/10): 1223.

[25]

Andreas B., Birgitta H., Maximilian F., Hans M. J. Ameri. Ceram. Soci., 1997, 80: 317.

[26]

Epp J. M., Dillard J. G. Chem. Mater., 1989, 1: 325.

[27]

Kuo C. K., Nicholson P. S. Solid State Ionics, 1999, 124(1/2): 171.

[28]

Xiao L. X., Zhang H. F., Scanlon E., Ramanathan L. S., Choe E. W., Rogers D., Apple T., Benicewic B. C. Z. Chem. Mater., 2005, 17: 5328.

[29]

Watari T., Wang H. Y., Kuwahara K., Tanaka K., Kita H., Okamoto K. J. Membr. Sci., 2003, 219(1/2): 137.

[30]

Li X. F., Wang Z., Lu H., Zhao C. J., Na H., Zhao C. J. Membr. Sci., 2005, 254(1/2): 147.

[31]

Ristic M., Popovic S., Music S. Materi. Lett., 2005, 59(10): 1227.

[32]

Liu F. Q., Yi B. L., Xing D. M., Yu J. R., Zhang H. M. J. Membr. Sci., 2003, 212(1/2): 213.

[33]

Chin I. J., Thurn-Albrecht T., Lim H. C., Russell T. P., Wang J. Polymer, 2001, 42(13): 5947.

[34]

Zawodzinshi T. A., Davey J., Valerio J., Gottesfeld S. Electrochim. Acta, 1995, 40: 297.

[35]

Kornshev A. A., Kuznetsov A. M., Spohr E., Ulstrup J. J. Phys. Chem. B, 2003, 107(15): 3351.

[36]

Watari T., Wang H. Y., Kuwahara K., Tanaka K., Kita H., Okamoto K. J. Membr. Sci., 2003, 219(1/2): 137.

[37]

Rhee C. H., Kim H. K., Chang H., Lee J. S. Chem. Mater., 2005, 17: 1691.

[38]

Zhong S., Cui X., Fu T., Na H. J. Power Sources, 2008, 180(1): 23.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/