Ethynyl substitution effect on the electronic excitation spectra of aniline

Yang Wang , Zengxia Zhao , Hongxing Zhang

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 268 -271.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 268 -271. DOI: 10.1007/s40242-016-5355-8
Article

Ethynyl substitution effect on the electronic excitation spectra of aniline

Author information +
History +
PDF

Abstract

We made an extended study on the structure and properties of the low-lying electronic states of ethynyl substituted aniline and their cations. We performed these calculations using density functional theory method(B3LYP and CAM-B3LYP DFT) and the complete active space self-consistent field(CASSCF) approach in connection with the aug-cc-pVZ Dunning’s basis sets and concerted ANO-L-VDZP basis sets. Our results included their equilibrium geometries, the vertical excitation spectra and the vertical and adiabatic ionization energies. The effect of ethynyl substitution on the electronic structure and the spectroscopy of aniline was probed.

Keywords

Electronic excited state / Vibrational spectrum / Complete active space self-consistent field(CASSCF)

Cite this article

Download citation ▾
Yang Wang, Zengxia Zhao, Hongxing Zhang. Ethynyl substitution effect on the electronic excitation spectra of aniline. Chemical Research in Chinese Universities, 2016, 32(2): 268-271 DOI:10.1007/s40242-016-5355-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

King G. A., Oliver T. A. A., Ashfold M. N. R. J. Chem. Phys., 2010, 132: 214307.

[2]

Schultz T., Samoylova E., Radloff W., Hertel I. V., Sobolewski A. L., Domcke W. Science, 2004, 306: 1765.

[3]

Gómez I., Reguero M., Boggio-Pasqua M., Robb M. A. J. Am. Chem. Soc., 2005, 127: 7119.

[4]

Sudholt W., Sobolewski A. L., Domcke W. Chem. Phys., 1999, 240: 9.

[5]

Grabowski Z. R., Rotkiewicz K., Rettig W. Chem. Rev., 2003, 103: 3899.

[6]

Lister D. G., Tyler J. K., Høg J. H., Larsen N. W. J. Mol. Struct., 1974, 23: 253.

[7]

Bacon A. R., Hollas J. M. Faraday. Discuss. Chem. Soc., 1988, 86: 129.

[8]

Sinclair W. E., Pratt D. W. J. Chem. Phys., 1996, 105: 7942.

[9]

Yeh J. H., Shen T. L., Nocera D. G., Leroi G. E., Suzuka I., Ozawa H., Namuta Y. J. Phys. Chem., 1996, 100: 4385.

[10]

Spoerel U., Stahl W. J. Mol. Spectrosc., 1998, 190: 278.

[11]

Ebata T., Minejima C., Mikami N. J. Phys. Chem. A, 2002, 106: 11070.

[12]

Tseng C. M., Dyakov Y. A., Huang C. L., Mebel A. M., Lin S. H., Lee Y. T., Ni C. K. J. Am. Chem. Soc., 2004, 126: 8760.

[13]

Bludský O., Šponer J., Leszczynski J., Špirko V., Hobza P. J. Chem. Phys., 1996, 105: 11042.

[14]

López-Tocón I., Della Valle R. G., Becucci M., Castellucci E., Otero J. C. Chem. Phys. Lett., 2000, 327: 45.

[15]

Honda Y., Hada M., Ehara M., Nakatsuji H. J. Chem. Phys., 2002, 117: 2045.

[16]

Wojciechowski P. M., Zierkiewicz W., Michalska D., Hobza P. J. Chem. Phys., 2003, 118: 10900.

[17]

Su Y. J., Tzeng W. B. Chem. Phys. Lett., 2012, 543: 19.

[18]

Becke A. D. J. Chem. Phys., 1993, 98: 5648.

[19]

Stephens P. J., Devlin F. J., Chabalowski C. F., Frisch M. J. J. Phys. Chem., 1994, 98: 11623.

[20]

Yanai T., Tew D. P., Handy N. C. Chem. Phys. Lett., 2004, 393: 51.

[21]

Dunning T. H. J. Chem. Phys., 1989, 90: 1007.

[22]

Woon D. E., Dunning T. H. J. Chem. Phys., 1993, 98: 1358.

[23]

Tozer D. J., Handy N. C. J. Chem. Phys., 1998, 109: 10180.

[24]

Tozer D. J., Amos R. D., Handy N. C., Roos B. O., Serrano-Andres L. Mol. Phys., 1999, 97: 859.

[25]

Roos B. O. Advances in Chemical Physics, 1987, Hoboken, NJ: John Wiley & Sons, Inc., 399.

[26]

Andersson K., Malmqvist P. N. M., Roos B. O. J. Chem. Phys., 1992, 96: 1218.

[27]

Forsberg N., Malmqvist P. N. M. Chem. Phys. Lett., 1997, 274: 196.

[28]

Ghigo G., Roos B. O., Malmqvist P. N. M. Chem. Phys. Lett., 2004, 396: 142.

[29]

Widmark P. O., Malmqvist P. A., Roos B. O. Theor. Chim. Acta, 1990, 77: 291.

[30]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, Revision B.01, 2010.

[31]

Zheng K., Yuan X., Goswami N., Zhang Q., Xie J. RSC Adv., 2014, 4: 60581.

[32]

Aquilante F., Pedersen T. B., Veryazov V., Lindh R. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2013, 3: 143.

[33]

Roberts G. M., Williams C. A., Young J. D., Ullrich S., Paterson M. J., Stavros V. G. J. Am. Chem. Soc., 2012, 134: 12578.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/