Studies on the interaction between vanillin and β-Amyloid protein via fluorescence spectroscopy and atomic force microscopy

Shengmei Song , Xuewen Ma , Yehong Zhou , Maotian Xu , Shaomin Shuang , Chuan Dong

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 172 -177.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 172 -177. DOI: 10.1007/s40242-016-5347-8
Article

Studies on the interaction between vanillin and β-Amyloid protein via fluorescence spectroscopy and atomic force microscopy

Author information +
History +
PDF

Abstract

β-Amyloid(Aβ) plaques and intracellular neurofibrillary lesions in the brain are markers of Alzheimer’s disease(AD). The ability to safely decrease Aβ concentrations is potentially important as a preventive strategy for AD. The interactions between vanillin and Aβ polypeptide were investigated via fluorescence spectroscopy and atomic force microscopy(AFM). The results of fluorescence and synchronous spectroscopies illustrate that the intrinsic fluorescence of tyrosine(Tyr) residues in Aβ 1-42 aggregates can be quenched strongly upon the formation of vanillin-Aβ 1-42 complex. Thioflavine T(ThT)-induced fluorescence changes indicated that Aβ 1-42 aggregates could be disaggregated by vanillin, and the AFM images of Aβ 1-42 enunciated the depolymerization of Aβ 1-42 aggregates by vanillin in a dose-dependent manner. Vanillin may be a potential pharmacological agent for the treatment of AD.

Keywords

β-Amyloid fibril / Vanillin / Interaction / Fluorescence spectroscopy / Atomic force microscopy

Cite this article

Download citation ▾
Shengmei Song, Xuewen Ma, Yehong Zhou, Maotian Xu, Shaomin Shuang, Chuan Dong. Studies on the interaction between vanillin and β-Amyloid protein via fluorescence spectroscopy and atomic force microscopy. Chemical Research in Chinese Universities, 2016, 32(2): 172-177 DOI:10.1007/s40242-016-5347-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yan L., Kevin M., Noor K. Int. J. Biochem. Cell Biol., 2003, 35: 1505.

[2]

Wang Z., Wan L., Zhou C., Fang X., Wang C., Bai C. Chin. Sci. Bull., 2003, 48: 437.

[3]

Hardy J. A., Higgins G. A. Science, 1992, 256: 184.

[4]

Selkoe D. J. Neuron., 1991, 6: 487.

[5]

Saraiva A. M., Cardoso I., Pereira M. C., Coelho M. A. N., Saraiva M. J., Möhwald H., Brezesinski G. Chem. Bio. Chem., 2010, 11: 1905.

[6]

de Felice F. G., Houzel J., Garcia-Abreu J., Louzada P. R. F., Afonso R. C., Meirelles M. N., Lent R., Neto V. M., Ferreira S. T. FASEB J., 2001, 15: 1297.

[7]

Gestwicki J. E., Crabtree G. R., Graef I. A. Science, 2004, 306: 865.

[8]

McLaurin J., Cecal R., Kierstead M. E., Tian X., Phinney A. L., Manea M., French J. E., Lambermon M. H. L., Darabie A. A., Brown M. E., Janus C., Chishti M. A., Horne P., Westaway D., Fraser P. E., Mount H. T. J., Przybylski M., St George-Hyslop P. Nat. Med., 2002, 8: 1263.

[9]

Liu R., Yuan B., Emadi S., Zameer A., Schulz P., McAllister C., Lyubchenko Y., Goud G., Sierks M. R. Biochemistry, 2004, 43: 6959.

[10]

Kierstead M., Brown M., McLaurin J. Neurobiol. Aging, 2002, 23(1): 413.

[11]

Tjernberg L. O., Naslund J., Lindqvist F., Johannsson J., Karlstrom A. R., Thyberg J., Terenius L., Nordstedt C. J. Biol. Chem., 1996, 271: 8545.

[12]

Song S., Wang Y., Xiong L., Qu L., Xu M. Chem. Res. Chinese Universities, 2013, 29(1): 20.

[13]

Song S., Wang Y., Xiong L., Qu L., Xu M. Chinese Chem. Lett., 2012, 23: 595.

[14]

Yang E. J., Kim S. I., Ku H. Y., Lee D. S., Lee J. W., Kim Y. S., Seong Y. H., Song K. S. Arch. Pharm. Res., 2010, 33(4): 531.

[15]

Kim M. J., Lee Y. H., Kwak J. E., Na Y. H., Yoon H. G. BMB Rep., 2011, 44(11): 730.

[16]

Song K. S., Jeong W. S., Jun M. Food Sci. Biotechnol., 2012, 21(3): 845.

[17]

Kim J., Kim S. H., Lee D. S., Lee D. J., Kim S. H., Chung S., Yang H. O. J. Gins. Res., 2013, 37(1): 100.

[18]

Yan J. J., Ahn W. G., Jung J. S., Kim H. S., Hasan M. A., Song D. K. Nutr. Res. Pract., 2014, 8(4): 386.

[19]

Choi S. M., Kim B. C., Cho Y. H., Choi K. H., Chang J., Park M. S., Kim M. K., Cho K. H., Kim J. K. Chonnam. Med. J., 2014, 50(2): 45.

[20]

Orhan I. E., Daglia M., Nabavi S. F., Loizzo M. R., Sobarzo-Sánchez E., Nabavi S. M. Curr. Med. Chem., 2015, 22: 1004.

[21]

Folk D. S., Franz K. J. J. Am. Chem. Soc., 2010, 132: 4994.

[22]

Ho K., Yazan L. S., Ismail N., Ismail M. Cancer Epidemiol., 2009, 33: 155.

[23]

Ho K., Yazan L. S., Ismail N., Ismail M. Food Chem. Toxicol., 2011, 49: 25.

[24]

Chou D. S., Lee J. J., Hsiao G., Hsieh C. Y., Tsai Y. J., Chen T. F., Sheu J. R. J. Agric. Food Chem., 2007, 55: 649.

[25]

Abraham D. J., Harris L. S., Meade B. J., Munson A. E., Swerdlow P. S., Patrick G. A. Method of Calming or Sedating an Animal with a Hydroxyl Benzaldehyde Compound, 1997.

[26]

Lirdprapamongkol K., Kramb J. P., Suthiphongchai T., Surarit R., Srisomsap C., Dannhardt G., Svasti J. J. Agric. Food Chem., 2009, 57: 3055.

[27]

Panisello C., Peña B., Gilabert O. G., Constantí M., Gumí T., Garcia-Valls R. Ind. Eng. Chem. Res., 2013, 52: 9995.

[28]

Zhou G., Ruhan A., Ge H., Wang L., Liu M., Wang B., Su H., Yan M., Xi Y., Fan Y. Burns, 2014, 40: 1668.

[29]

Xu J., Xu H. Li.u.Y., He H., Li G. Psychiat. Res., 2015, 225: 509.

[30]

Zhu M., Han S., Zhou F., Carter S. A., Fink A. L. J. Biol. Chem., 2004, 279: 24452.

[31]

Lakowicz J. R. Principles of Fluorescence Spectroscopy, 3rd Ed., 2006, Berlin: Springer Press, 278.

[32]

Sharma A., Schulman S. G. Introduction of Fluorescence Spectroscopy, 1999, New York: Wiley, 58.

[33]

Lakowica J. R., Weber G. Biochemistry, 1973, 12: 4161.

[34]

Ware W. R. J. Phys. Chem., 1962, 66: 455.

[35]

Levine H. Protein Sci., 1993, 2: 404.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/