Effect of sulfonation degree on performance of proton exchange membranes for direct methanol fuel cells

Zheng Xiang , Xueping Zhao , Junjie Ge , Shuhua Ma , Yuwei Zhang , Hui Na

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 291 -295.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 291 -295. DOI: 10.1007/s40242-016-5344-y
Article

Effect of sulfonation degree on performance of proton exchange membranes for direct methanol fuel cells

Author information +
History +
PDF

Abstract

A series of proton exchange membranes based on sulfonated polyarylene ether ketones(SPAEKs) was used to study the effect of sulfonation degree on proton conductivity, methanol permeation and performance of direct methanol fuel cells(DMFCs). Dependences of physical characteristics of the membranes, i. e., proton conductivity, water uptake, swelling ratio, methanol permeability and ion exchange capacity(IEC) were systematically studied. Both methanol permeability and proton conductivity of the SPAEK membrane grow rapidly as the increase in sulfonation degree since methanol molecules and protons share the same transfer channel. However,the methanol permeability plays more important role comparing to proton conductivity. As a result, the SPAEK membrane with a medium sulfonation degree(60%) was found to yield the best performance in a DMFC due to the acquirement of balanced conductivity and methanol permeability.

Keywords

Fuel cell / Sulfonation degree / Proton exchange membrane / Methanol permeability

Cite this article

Download citation ▾
Zheng Xiang, Xueping Zhao, Junjie Ge, Shuhua Ma, Yuwei Zhang, Hui Na. Effect of sulfonation degree on performance of proton exchange membranes for direct methanol fuel cells. Chemical Research in Chinese Universities, 2016, 32(2): 291-295 DOI:10.1007/s40242-016-5344-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lin M. L., Lo M. Y., Mou C. Y. Catalysis Today, 2011, 160: 109.

[2]

Xue X. Z., Ge J. J., Liu C. P., Xing W., Lu T. H. Electrochem. Commun., 2006, 8: 1280.

[3]

Li X., Chen G., Xie J., Zhang L. J., Xia D. G., Wu Z. Y. J. Electrochem. Soc., 2010, 157: B580.

[4]

Zhang Y. W., Ge J. J., Cui Z. M., Liu C. P., Xing W., Zhang J. J., Lin H. D., Na H. Inter. J. Hydrogen Energy, 2010, 35: 8337.

[5]

Shao A. F., Wang Z. B., Chu Y. Y., Jiang Z. Z., Yin G. P., Liu Y. Fuel Cells, 2010, 10: 472.

[6]

Lin H., Sun W., Zhao C., Na H. J. Polymer Res., 2013, 20: 306.

[7]

Zhang Y., Cai W., Si F., Ge J., Liang L., Liu C., Xing W. Chem. Commun., 2012, 48: 2870.

[8]

Li M., Zhang G., Xu S., Zhao C., Han M., Zhang L., Jiang H., Liu Z., Na H. J. Power Sources, 2014, 255: 101.

[9]

Zhang L., Zhang G., Zhao C., Jiang H., Wang J., Xu D., Zhang Y., Shao K., Liu Z., Ma W., Li H., Li M., Wang S., Na H. J. Power Sources, 2012, 201: 142.

[10]

Perrot C., Gonon L., Bardet M., Marestin C., Pierre-Bayle A., Gebel G. Polymer, 2009, 50: 1671.

[11]

Ma W., Zhao C., Lin H., Zhang G., Ni J., Wang J., Wang S., Na H. J. Power Sources, 2011, 196: 9331.

[12]

Miyake N., Wainright J. S., Savinell R. F. J. Electrochem. Soc., 2001, 148: A905.

[13]

Neburchilov V., Martin J., Wang H., Zhang J. J. Power Sources, 2007, 169: 221.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/