Biochemical characterization of translesion synthesis by Sulfolobus acidocaldarius DNA polymerases

Li Peng , Xu Xia , Xipeng Liu

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 226 -233.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 226 -233. DOI: 10.1007/s40242-016-5337-x
Article

Biochemical characterization of translesion synthesis by Sulfolobus acidocaldarius DNA polymerases

Author information +
History +
PDF

Abstract

To study the DNA synthesis mechanism of Sulfolobus acidocaldarius, a thermophilic species from Crenarchaeota, two DNA polymerases of B family(polB1 and polB3), and one DNA polymerase of Y family(polIV) were recombinantly expressed, purified and biochemically characterized. Both DNA polymerases polB1(Saci_1537) and polB3(Saci_0074) possessed DNA polymerase and 3’ to 5’ exonuclease activities; however, both the activities of B3 were very inefficient in vitro. The polIV(Saci_0554) was a polymerase, not an exonuclease. The activities of all the three DNA polymerases were dependent on divalent metal ions Mn2+ and Mg2+. They showed the highest activity at pH values ranging from 8.0 to 9.5. Their activities were inhibited by KCl with high concentration. The optimal reaction temperatures for the three DNA polymerases were between 60 and 70 °C. Deaminated bases dU and dI on DNA template strongly hindered primer extension by the two DNA polymerases of B family, not by the DNA polymerase of Y family. DNA polymerase of Y Family bypassed the two AP site analogues dSpacer and propane on template more easily than DNA polymerases of B family. Our results suggest that the three DNA polymerases coordinate to fulfill various DNA synthesis in Sulfolobus acidocaldarius cell.

Keywords

Archaeota / Sulfolobus acidocaldarius / DNA polymerase / DNA damage / DNA replication

Cite this article

Download citation ▾
Li Peng, Xu Xia, Xipeng Liu. Biochemical characterization of translesion synthesis by Sulfolobus acidocaldarius DNA polymerases. Chemical Research in Chinese Universities, 2016, 32(2): 226-233 DOI:10.1007/s40242-016-5337-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MacNeill S. Subcell Biochem., 2012, 62: 1.

[2]

Chen D., Yue H., Spiering M. M., Benkovic S. J. J. Biol. Chem., 2013, 288(29): 20807.

[3]

Hubscher U., Maga G., Spadari S. Annu. Rev. Biochem., 2002, 71: 133.

[4]

Choi J. Y., Eoff R. L., Pence M. G., Wang J., Martin M. V., Kim E. J., Folkmann L. M., Guengerich F. P. J. Biol. Chem., 2011, 286(36): 31180.

[5]

O’Donnell M., Langston L., Stillman B. Cold Spring Harb. Perspect. Biol., 2013, 5(7): a010108.

[6]

Sarmiento F., Long F., Cann I., Whitman W. B. Archaea, 2014, 75946: 1.

[7]

Yamtich J., Sweasy J. B. Biochim. Biophys. Acta, 2010, 1804(5): 1136.

[8]

Grabowski B., Kelman Z. Annu. Rev. Microbiol., 2003, 57: 487.

[9]

Yang W. Biochemistry, 2014, 53(17): 2793.

[10]

Ohmori H., Friedberg E. C., Fuchs R. P., Goodman M. F., Hanaoka F., Hinkle D., Kunkel T. A., Lawrence C. W., Livneh Z., Nohmi T., Prakash L., Prakash S., Todo T., Walker G. C., Wang Z., Woodgate R. Mol. Cell, 2001, 8(1): 7.

[11]

Rivera M. C., Lake J. A. Nature, 2004, 431(7005): 152.

[12]

Lindahl T., Nyberg B. Biochemistry, 1974, 13(16): 3405.

[13]

Lin L., Liu Y. F., Liu X. P., Liu J. H. Chem. Res. Chinese Universities, 2012, 28(3): 477.

[14]

Brock T. D., Brock K. M., Belly R. T., Weiss R. L. Arch. Mikrobiol., 1972, 84(1): 54.

[15]

Chen L., Brügger K., Skovgaard M., Redder P., She Q., Torarinsson E., Greve B., Awayez M., Zibat A., Klenk H. P., Garrett R. A. J. Bacteriol., 2005, 187(14): 4992.

[16]

Wagner M., van Wolferen M., Wagner A., Lassak K., Meyer B. H., Reimann J., Albers S. V. Front. Microbiol., 2012, 3: 214.

[17]

Waters L. S., Minesinger B. K., Wiltrout M. E., D’Souza S., Woodruff R. V., Walker G. C. Microbiol. Mol. Biol. Rev., 2009, 73(1): 134.

[18]

Liu X. P., Liu J. H. Protein Sci., 2010, 19(5): 967.

[19]

Bauer R. J., Begley M. T., Trakselis M. A. Biochemistry, 2012, 51(9): 1996.

[20]

Greagg M. A., Fogg M. J., Panayotou G., Evans S. J., Connolly B. A., Pearl L. H. Proc. Natl. Acad. Sci. USA, 1999, 96(16): 9045.

[21]

Zhang L., Zhang L., Liu Y., Yang S., Gao C., Gong H., Feng Y., He Z. G. Proc. Natl. Acad. Sci. USA, 2009, 106(19): 7792.

[22]

Greenough L., Kelman Z., Gardner A. F. J. Biol. Chem., 2015, 290(20): 12514.

[23]

Cubonová L., Richardson T., Burkhart B. W., Kelman Z., Connolly B. A., Reeve J. N., Santangelo T. J. J. Bacteriol., 2013, 195(10): 2322.

[24]

Hartman A. L., Norais C., Badger J. H., Delmas S., Haldenby S., Madupu R., Robinson J., Khouri H., Ren Q., Lowe T. M., Maupin-Furlow J., Pohlschroder M., Daniels C., Pfeiffer F., Allers T., Eisen J. A. PLoS One, 2010, 5(3): e9605.

[25]

Allers T., Ngo H. P., Mevarech M., Lloyd R. G. Appl. Environ. Microbiol., 2004, 70(2): 943.

[26]

Ling H., Boudsocq F., Woodgate R., Yang W. Cell, 2001, 107(1): 91.

[27]

Sale J. E., Lehmann A. R., Woodgate R. Nat. Rev. Mol. Cell Biol., 2012, 13(3): 141.

[28]

Boudsocq F., Kokoska R. J., Plosky B. S., Vaisman A., Ling H., Kunkel T. A., Yang W., Woodgate R. J. Biol. Chem., 2004, 279(31): 32932.

[29]

Kokoska R. J., Bebenek K., Boudsocq F., Woodgate R., Kunkel T. A. J. Biol. Chem., 2002, 277(22): 19633.

[30]

Kath J. E., Jergic S., Heltzel J. M., Jacob D. T., Dixon N. E., Sutton M. D., Walker G. C., Loparo J. J. Proc. Natl. Acad. Sci. USA, 2014, 111(21): 7647.

[31]

Sakofsky C. J., Foster P. L., Grogan D. W. DNA Repair(Amst.), 2012, 11(4): 391.

[32]

Wilson R. C., Pata J. D. Mol. Cell, 2008, 29(6): 767.

[33]

Elshawadfy A. M., Keith B. J., Ee Ooi H., Kinsman T., Heslop P., Connolly B. A. Front. Microbiol., 2014, 5: 224.

[34]

Cann I. K., Ishino S., Nomura N., Sako Y., Ishino Y. J. Bacteriol., 1999, 181(19): 5984.

[35]

Makarova K. S., Krupovic M., Koonin E. V. Front. Microbiol., 2014, 5: 354.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/