Studies on the halogen substituted β-amino acids and their Cu(II) coordination complexes in crystallography

Chunying Zheng , Qiming Qiu , Liang Hao , Hui Li

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 1 -7.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 1 -7. DOI: 10.1007/s40242-016-5333-1
Article

Studies on the halogen substituted β-amino acids and their Cu(II) coordination complexes in crystallography

Author information +
History +
PDF

Abstract

Halogen substituted β-amino acids, D,L-3-amino-3-(4-fluoro)phenylpropionic acid(D,L-HL1, 1) and D,L-3-amino-3-(4-bromo)phenylpropionic acid(D,L-HL2, 2), as well as their Cu(II) coordination complexes [Cu(L1)2(CH3OH)2]·2CH3OH(3) and [Cu(L2)2(CH3OH)2]·2CH3OH(4) were investigated and their single crystal structures were discussed in details. Supramolecular helical chains were found in β-amino acids 1 and 2 while there was no helix in their coordination complexes 3 and 4. The formation of supramolecular helixes could be due to the hydrogen bonds between terminal ―NH3 + and adjacent ―COO in β-amino acids 1 and 2. While, this kind of hydrogen bonds could not be observed in their Cu(II) coordination complexes 3 and 4, in which central-symmetrical dimers could be formed via coplanar coordinated bonds(N―Cu―O) between ―NH2 and ―COO.

Keywords

β-Amino acid / Copper / H-Bonding / Halogen / Crystal structure

Cite this article

Download citation ▾
Chunying Zheng, Qiming Qiu, Liang Hao, Hui Li. Studies on the halogen substituted β-amino acids and their Cu(II) coordination complexes in crystallography. Chemical Research in Chinese Universities, 2016, 32(1): 1-7 DOI:10.1007/s40242-016-5333-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Y., Li L., Yuan W., Zhang X. Chem. Res. Chinese Universities, 2015, 31(3): 381.

[2]

Wang J., Luo X., Yuan Y., Zhang L. Chem. Res. Chinese Universities, 2015, 31(4): 503.

[3]

van Hecke K., Cardinaels T., Nockemann P., Jacobs J., Vanpraet L., Parac-Vogt T. N., Binnemans K. v., Meervelt L. Angew. Chem. Int. Ed., 2014, 53(34): 8959.

[4]

Li S., Sun W., Wang K., Ma H., Pang H., Liu H., Zhang J. Inorg. Chem., 2014, 53(9): 4541.

[5]

Huang Z. G., Kang S. K., Banno M., Yamaguchi T., Lee D., Seok C., Yashima E., Lee M. Science, 2012, 337(6101): 1521.

[6]

Falkowski J. M., Liu S., Wang C., Lin W. B. Chem. Commun., 2012, 48(52): 6508.

[7]

Hu B., Tao T., Bin Z. Y., Peng Y. X., Ma B. B., Huang W. Cryst. Growth Des., 2014, 14(1): 300.

[8]

Kurahashi T., Hada M., Fujii H. Inorg. Chem., 2014, 53(2): 1070.

[9]

Zhou P., Yao J. F., Sheng C. F., Li H. Cryst. Eng. Comm., 2013, 15(42): 8430.

[10]

Sanz M. E., Lesarri A., Peña M. I., Vaquero V., Cortijo V., López J. C., Alonso J. L. J. Am. Chem. Soc., 2006, 128(11): 3812.

[11]

Prikhodchenko P. V., Medvedev A. G., Tripol’skaya T. A., Churakov A. V., Wolanov Y., Howardc J. A. K., Lev O. Cryst. Eng. Comm., 2011, 13(7): 2399.

[12]

Dong L., Zheng C., Zhou P., Shi R., Li H. Acta Chim. Sinica, 2014, 72(9): 981.

[13]

Baran J., Drozd M., Ratajczak H., Pietraszko A. J. Mol. Struct., 2009, 927(1): 43.

[14]

Kandasamy A., Siddeswaran R., Murugakoothan P., Suresh Kumar P., Mohan R. Cryst. Growth. Des., 2007, 7(2): 183.

[15]

Jarmelo S., Reva I., Rozenberg M., Silva M. R., Beja A. M. M., Fausto R. J. Phys. Chem. B, 2008, 112(27): 8032.

[16]

Wilkinson H. S., Harrison W. T. A. Acta Cryst. C, 2005, 61(6): 253.

[17]

Donohue J. J. Am. Chem. Soc., 1950, 72(2): 949.

[18]

Kolesov B. K., Minko V. S., Boldyreva E. V., Drebushchak T. N. J. Phys. Chem. B, 2008, 112(40): 12827.

[19]

Vasily S., Minkov V. S., Tumanov N. A. Cryst. Eng. Comm., 2010, 12(9): 2551.

[20]

Hübschle C. H., Messerschmidt M., Luger M. Cryst. Res. Technol., 2004, 39(3): 274.

[21]

Iwama S., Horiguchi M., Sato H., Uchida Y., Takahashi H., Tsue H., Tamura R. Cryst. Growth Des., 2010, 10(6): 2668.

[22]

Konno T., Yoshimura T., Aoki K., Okamoto K., Hirotsu M. Angew. Chem. Int. Ed., 2001, 40(9): 1765.

[23]

Leung B. O., Jalilehvand F., Mah V., Parvez M., Wu Q. Inorg. Chem., 2013, 52(8): 4593.

[24]

Wojciechowska A., Daszkiewicz M., Staszak Z., Trusz-Zdybek A., Bienko A., Ozarowskiz A. Inorg. Chem., 2011, 50(22): 11532.

[25]

Lou B. Y., Jiang F. L., Wu B. L., Yuan D. Q., Hong M. C. Cryst. Growth Des., 2006, 6(4): 989.

[26]

Konar A. D. Cryst. Eng. Comm., 2013, 15(13): 2466.

[27]

Abirami S., Xing Y. M., Tsang C. W., Ma N. L. J. Phys. Chem. A, 2005, 109(3): 500.

[28]

Sewald N. Angew. Chem. Int. Ed., 2003, 42(47): 5794.

[29]

Frackenpohl J., Arvidsson P. I., Schreiber J. V., Seebach D. Chem. Bio. Chem., 2001, 2(6): 445.

[30]

Jin L. L., Lei Y. T. Chem. Res. Chinese Universities, 2013, 29(4): 710.

[31]

Seebach D., Gardiner J. Acc. Chem. Res., 2008, 41(10): 1366.

[32]

Fülöp F., Martikek T. A., Tóth G. K. Chem. Soc. Rev., 2006, 35(4): 323.

[33]

Porter E. A., Wang X., Lee H., Weisblum B., Gellman S. H. Nature, 2000, 404(6778): 565.

[34]

Specker E., Bottcher J., Lilie H., Heine A., Schoop A., Muller G., Griebenow N., Klebe G. Angew. Chem. Int. Ed., 2005, 44(20): 3140.

[35]

Myers A. G., Barbay J. K., Zhong B. J. Am. Chem. Soc., 2001, 123(30): 7207.

[36]

Drouet F., Noisier A. F. M., Harris C. S., Furkert D. P., Brimble M. A. Eur. J. Org. Chem., 2014, 2014(6): 1195.

[37]

Salwiczek M., Nyakatura E. K., Gerling U. I. M., Ye S., Koksch B. Chem. Soc. Rev., 2012, 41(6): 2135.

[38]

Buer B. C., Marsh E. N. G. Protein Sci., 2012, 21(4): 453.

[39]

Yuvienco C., More H. T., Haghpanah J. S., Tu R. S., Montclare J. K. Biomacromolecules, 2012, 13(8): 2273.

[40]

Kim W., Hardcastle K. I., Conticello V. P. Angew. Chem. Int. Ed., 2006, 45(48): 8141.

[41]

Puga A. V., Teixidor F., Sillanp R. Chem. Eur. J., 2009, 15(38): 9764.

[42]

Guillermo M. E., Lee B., David R. A. J. Am. Chem. Soc., 2008, 130: 9058.

[43]

Metrangelo P., Meyer F., Pilati T., Resnati G., Terraneo G. Angew. Chem. Int. Ed., 2008, 47(33): 6114.

[44]

Desiraju G. R. Nature, 2001, 412(6845): 397.

[45]

Aakeröy C. B., Chopade P. D., Desper J. Cryst. Growth Des., 2011, 11(12): 5333.

[46]

Tero T. R., Salorinne K., Nissinen M. Cryst. Eng. Comm., 2012, 14(21): 7360.

[47]

Cariati E., Forni A., Biella S., Metrangolo P., Meyer F., Resnati G., Righetto S., Tordin E., Ugo R. Chem. Commun., 2007, 25: 2590.

[48]

Kudo F., Miyanagaa A., Eguchi T. Nat. Prod. Rep., 2014, 31(8): 1056.

[49]

Weiner B., Szymanski W., Janssen D. B., Minnaarda A. J., Feringa B. L. Chem. Soc. Rev., 2010, 39(5): 1656.

[50]

Saha M. K., Bernal I. Chem. Commun., 2003, 5: 612.

[51]

Gasque L., Verhoeven M. A., Bernès S., Barrios F., Haasnoot J. G., Reedijk J. Eur. J. Inorg. Chem., 2008, 28: 4395.

[52]

Gerasimenko A. V., Davidovich R. L., Logvinova V. B. J. Mol. Struct., 2011, 52(3): 524.

[53]

Beaumont S., Pons V., Retailleau P., Dodd R. H., Dauban P. Angew. Chem. Int. Ed., 2010, 49(9): 1634.

[54]

Tana C. Y. K., Weaver D. F. Tetrahedron, 2002, 58(37): 7449.

[55]

Bruker, SMART and SAINT, Bruker AXS Inc., Madison, 2002

[56]

Sheldrick G. M. Acta Crystallogr. Sect. A, 2008, 64: 112.

[57]

Chopra D., Nagarajan K., Guru R. T. N. Cryst. Growth Des., 2005, 5(3): 1035.

[58]

Minkov V. S., Chesalov Y. A., Boldyreva E. V. J. Struct. Chem., 2010, 51(6): 1052.

[59]

Ramachandran E., Natarajan S. Cryst. Res. Technol., 2006, 41(4): 411.

[60]

Gao E. Q., Yue Y. F., Bai S. Q., He Z., Yan C. H. J. Am. Chem. Soc., 2004, 126(5): 1419.

[61]

Rao A. S., Pal A., Ghosh R., Das S. K. Inorg. Chem., 2009, 48(5): 1802.

[62]

Tian G., Zhu G. S., Yang X.Y., Fang Q. R., Xue M., Sun J. Y., Wei Y., Qiu S. L. Chem. Commun., 2005, 11: 1396.

[63]

Christenholz C. L., Obenchain D. A., Peebles R. A., Peebles S. A. J. Phys. Chem. A, 2014, 118(9): 1610.

[64]

Alonso J. L., Antolínez S., Blanco S., Lesarri A., Lopez J. C., Caminati W. J. Am. Chem. Soc., 2004, 126(10): 3244.

[65]

Asensio G., Medio-Simon M., Alemán P., Ramírez de Arellano C. Cryst. Growth Des., 2006, 6(12): 2769.

[66]

Murray-Rust P., Stallings W. C., Monti C. T., Preston R. K., Glusker J. P. J. Am. Chem. Soc., 1983, 105(10): 3206.

[67]

Schwarzer A., Seichter W., Weber E., Stoeckli-Evans H., Losadac M., Hulliger J. Cryst. Eng. Comm., 2004, 6: 567.

[68]

Pavan M. S., Pal R., Nagarajan K., Guru R. T. N. Cryst. Growth Des., 2014, 14(11): 5477.

[69]

Berger R., Resnati G., Metrangolo P., Weber E., Hulliger J. Chem. Soc. Rev., 2011, 40(7): 3496.

[70]

Metrangolo P., Murray J. S., Pilati T., Politzer P., Resnati G., Terraneo G. Cryst. Eng. Comm., 2011, 13(22): 6593.

[71]

Desiraju G. R., Parthasarathy R. J. Am. Chem. Soc., 1989, 111(23): 8725.

[72]

Bailey A. J., Lee C., Feller R. K., Orton J. B., Mellot-Draznieks C., Slater B., Harrison W. T. A., Simoncic P., Navrotsky A., Grossel M. C., Cheetham A. K. Angew. Chem. Int. Ed., 2008, 47(120): 8634.

[73]

Chen S., Zhang J., Bu X. Inorg. Chem., 2009, 48(14): 6356.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/