Agglomerated Pd catalysts and their applications in hydrogen production from formic acid decomposition at room temperature

Jun Liu , Lixin Lan , Chao Wu , Rong Li , Xuanyan Liu

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 272 -277.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 272 -277. DOI: 10.1007/s40242-016-5331-3
Article

Agglomerated Pd catalysts and their applications in hydrogen production from formic acid decomposition at room temperature

Author information +
History +
PDF

Abstract

Agglomerated Pd catalysts with the nano-porous structure were simply prepared by one-step reduction reaction without using any stabilizer. The Pd catalysts show a high catalytic activity for the decomposition of formic acid at room temperature. Among all the Pd catalysts tested, the PdMg catalyst exhibits the highest catalytic activity. Moreover, the breakthrough of the advanced catalysts is that the above agglomerated Pd catalysts can be easily separated from the liquid system to control the catalytic reaction at any time, which may further promote the practical application of formic acid as a H2 storage material.

Keywords

Hydrogen energy / Heterogeneous catalyst / Formic acid decomposition / Pd catalyst / Nano-porous structure

Cite this article

Download citation ▾
Jun Liu, Lixin Lan, Chao Wu, Rong Li, Xuanyan Liu. Agglomerated Pd catalysts and their applications in hydrogen production from formic acid decomposition at room temperature. Chemical Research in Chinese Universities, 2016, 32(2): 272-277 DOI:10.1007/s40242-016-5331-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Winter C. J. Int. J. Hydrogen Energy, 2009, 34: S1.

[2]

Amoo L. M., Fagbenle R. L. Int. J. Hydrogen Energy, 2014, 39: 12409.

[3]

Albert B., Björn L., Henrik J., Matthias B. Chem. Sus. Chem., 2008, 1: 751.

[4]

Björn L., Albert B., Henrik J., Matthias B. Angew. Chem. Int. Ed., 2008, 47: 3962.

[5]

Henrik J., Albert B., Francesca C., Björn L., James R. N., Serafino G., Matthias B. Tetrahedron Lett., 2009, 50: 1603.

[6]

Björn L., Albert B., Henrik J., James R. N., Wolfgang B., Matthias B. Chem. Commun., 2009, 28: 4185.

[7]

Céline F., Paul J. D., Gábor L. Angew. Chem. Int. Ed., 2008, 47: 3966.

[8]

Céline F., Ning Y., Paul J. D., Gábor L. Chem. Eur. J., 2009, 15: 3752.

[9]

Miklos C., Alain G., Robert M., Ralf H., Prakash G. K. S., George A. O. Chem. Sus. Chem., 2011, 4: 1241.

[10]

Karaked T., Li T., Simon J., Chun W. A. C., Kai M. K. Y., Paul A. J. B., Emmanuelle A. M., Georg S. D. W., Shik C. E. T. Nat. Nanotech., 2011, 6: 302.

[11]

Zhou X. C., Huang Y. J., Xing W., Liu C. P., Liao J. H., Lu T. H. Chem. Commun., 2008, 30: 3540.

[12]

Zhou X. Z., Huang Y. J., Liu C. P., Liao J. H., Lu T. H., Xing W. Chem. Sus. Chem., 2010, 3: 1379.

[13]

Ping Y., Yan J. M., Wang Z. L., Wang H. L., Jiang Q. J. Mater. Chem. A, 2013, 1: 12188.

[14]

Dai H. M., Cao N., Yang L., Su J., Luo W., Cheng G. Z. J. Mater. Chem. A, 2014, 2: 11060.

[15]

Metin O., Sun X., Sun S. Nanoscale, 2013, 5: 910.

[16]

Kohsuke M., Masahiro D., Hiromi Y. ACS Catal., 2013, 3: 1114.

[17]

Yang L., Hua X., Sun J., Luo W., Chen S. L., Cheng G. Z. Appl. Catal. B, 2015, 168: 423.

[18]

Kaustab M., Debaleena B., Subrata D. Int. J. Hydrogen Energy, 2015, 40: 4786.

[19]

Dai H. G., Cao N., Yang L., Su J., Luo W., Cheng G. Z. J. Mater. Chem. A, 2014, 2: 11060.

[20]

Ahmet B., Mehmet Y., Yasar K., Zafer S., Hilal K., Murat K., Mehmet G., Emrah O., Mehmet Z. ACS Catal., 2015, 5: 6099.

[21]

Masashi H., Hisahiro E., Takeshi D., Masaharu T. J. Mater. Chem. A, 2015, 3: 4453.

[22]

Gazsi A., Bánsági T., Solymosi F. J. Phys. Chem. C, 2011, 115: 15459.

[23]

Manuel O., Enrique I. Angew. Chem. Int. Ed., 2009, 48: 4800.

[24]

Mahendra Y., Tomoki A., Nobuko T., Xu Q. J. Mater. Chem., 2012, 22: 12582.

[25]

Bi Q. Y., Du X. L., Liu Y. M., Cao Y., He H. Y., Fan K. N. J. Am. Chem. Soc., 2012, 134: 8926.

[26]

Wang Z. L., Yan J. M., Wang H. L., Ping Y., Jiang Q. Sci. Rep., 2012, 2: 598.

[27]

Hu C. Q., Ting S. W., Jenkin T., Chan K. Y. Int. J. Hydrogen Energy, 2012, 37: 6372.

[28]

Wang Z. L., Yan J. W., Wang H. L., Ping Y., Qing J. J. Mater. Chem. A, 2013, 1: 12721.

[29]

Yu W. Y., Mullen G. M., Flaherty D. W., Mullins C. B. J. Am. Chem. Soc., 2014, 136: 11070.

[30]

Wu S., Yang F., Wang H., Chen R., Sun P., Chen T. H. Chem. Commun., 2015, 51: 10887.

[31]

Wu S., Yang F., Sun P., Chen T. H. RSC Adv., 2014, 4: 44500.

[32]

Wang X., Qi G. W., Tan C. H., Li Y. P., Guo J., Pang X. J., Zhang S. Y. Int. J. Hydrogen Energy, 2014, 39: 837.

[33]

Hu L., Zheng B., Lai Z. P., Huang K. W. Int. J. Hydrogen Energy, 2014, 39: 20031.

[34]

Hu C. Q., Ting S. W., Chan K. Y., Huang W. Int. J. Hydrogen Energy, 2013, 38: 8720.

[35]

Wang Z. L., Ping Y., Yan J. M., Wang H. L., Jiang Q. Int. J. Hydrogen Energy, 2014, 39: 4850.

[36]

Mehmet Y., Ahmet B. M. Z., Murat K. Appl. Catal. B-Environ., 2014, 160: 514.

[37]

Zhang H., Metin O., Su D., Sun S. Angew. Chem., Int. Ed., 2013, 52: 3681.

[38]

Liu J., Cao L., Xia Y., Huang W., Li Z. L. Int. J. Electrochem. Sci., 2013, 8: 9435.

[39]

Lukaszewski M., Czerwinski A. Thin Solid Films, 2010, 518: 3680.

[40]

Cheng N. C., Lv H. F., Wang W., Mu S. C., Pan M., Frank M. J. Power Sources, 2010, 195: 7246.

AI Summary AI Mindmap
PDF

85

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/