Influence of layered aluminoborophosphate on flame retardance, crystallization behaviors and mechanical properties of polyamide 66 systems

Xiaoshuang Li , Yuan Liu , Chaofeng Guo , Haiyang Liu , Gang Wang , Qiang Cai , Youwei Yao

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 127 -133.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 127 -133. DOI: 10.1007/s40242-016-5327-z
Article

Influence of layered aluminoborophosphate on flame retardance, crystallization behaviors and mechanical properties of polyamide 66 systems

Author information +
History +
PDF

Abstract

A layered aluminoborophosphate(LABP-DDA) was hydrothermally synthesized using dodecylamine as a structure-directing agent, and was added into polyamide 66(PA66) to obtain nanocomposites, PA66/LABP-DDA, via melt intercalation method. The characterization results of transmission electron microscopy(TEM) and small angle X-ray scattering (SAXS) indicate that LABP-DDA has been successfully exfoliated into nano-layers of PA66 matrix. The unstable γ phase of PA66 was found in the composites with the help of X-ray diffraction(XRD) and differential scanning calorimetry(DSC). The heterogeneous nucleation effect of LABP-DDA resulted in an increasement of about 10 °C in melting temperature and an increasement of about 7% in crystallinity when compared with those of neat PA66. The introduction of LABP-DDA did not significantly affect the toughness and strength of PA66. The results of flammability test indicate that LABP-DDA possesses positive synergistic flame retarding effect in the presence of melamine polyphosphate(MPP) and the 77%PA66/(23–x)%MPP/x%LABP-DDA(x=1, 2) samples in thickness of 1.6 mm reached from Fail to V-1 rating based on UL94, compared with 77%PA66/23%MPP.

Keywords

Layered phosphate / Polyamide 66 / Flame retardancy / Nanocomposite

Cite this article

Download citation ▾
Xiaoshuang Li, Yuan Liu, Chaofeng Guo, Haiyang Liu, Gang Wang, Qiang Cai, Youwei Yao. Influence of layered aluminoborophosphate on flame retardance, crystallization behaviors and mechanical properties of polyamide 66 systems. Chemical Research in Chinese Universities, 2016, 32(1): 127-133 DOI:10.1007/s40242-016-5327-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wilson S. T., Lok B. M., Messina C. A., Cannan T. R., Flanigen E. M. J. Am. Chem. Soc., 1982, 104: 1146.

[2]

Mishra T., Parida K. M., Rao S. B. Appl. Catal. A, General, 1998, 166: 115.

[3]

Kimura T. Micropor. Mesopor. Mater., 2005, 77: 97.

[4]

Kimura T., Sugahara Y., Kuroda K. Chem. Mater., 1999, 11: 508.

[5]

Jeong H. K., Krych W., Ramanan H., Nair S., Marand E., Tsapatsis M. Chem. Mater., 2004, 16: 3838.

[6]

Jiang S., Zhou K., Shi Y., Hong N., Lo S., Hu Y., Zhou G. Ind. Eng. Chem. Res., 2013, 52: 16766.

[7]

Kashiwagi T., Harris R. H., Zhang X., Briber R. M., Cipriano B. H., Raghavan S. R., Walid H. A., John R. S. Polymer, 2004, 45: 881.

[8]

Homminga D. S., Goderis B. Polymer, 2006, 47: 1630.

[9]

Moya R., Rodríguez-Zúñiga A., Vega-Baudrit J. Á, lvarez V. Int. J. Adhes. Adhes., 2015, 59: 62.

[10]

Chen G. M., Qi Z. N. Chem. J. Chinese Universities, 1999, 20(12): 1987.

[11]

Tammaro L., Vittoria V., Bugatti V. Eur. Polym. J., 2014, 52: 172.

[12]

Demirkaya Z. D., Sengul B., Eroglu M. S., Dilsiz N. J. Polym. Res., 2015, 22: 1.

[13]

Liu Y.J., Mao L. Chem. J. Chinese Universities, 2013, 34(12): 2903.

[14]

Wang L., Ling X. L., Guo C. X., Yu J. Chem. J. Chinese Universities, 2012, 33(12): 2789.

[15]

Yang D., Hu Y., Song L., Nie S., He S., Cai Y. Polym. Degrad. Stabil., 2008, 93: 2014.

[16]

Boo W. J., Sun L. Y., Liu J., Clearfield A., Sue H. J., Mullins M. J., Pham H. Compos. Sci. Technol., 2007, 67: 262.

[17]

Liu X., Wu Q., Berglund L. A. Polymer, 2002, 43: 4967.

[18]

Song L., Hu Y., He Q., You F., J. Fire Sci., 2008, 26, 475

[19]

Mu B., Wang Q., Wang H., Jian L. J. Macromol. Sci. B, 2007, 46: 1093.

[20]

Shen L., Phang I. Y., Chen L., Liu T., Zeng K. Polymer, 2004, 45: 3341.

[21]

Gyoo P. M., Venkataramani S., Kim S. C. J. Appl. Polym. Sci., 2006, 101: 1711.

[22]

Sheng F., Tang X. Z., Zhang S., Ding X., Yu Z. Z., Qiu Z. Polym. Adv. Technol., 2012, 23: 137.

[23]

Qin H., Su Q., Zhang S., Zhao B., Yang M. Polymer, 2003, 44: 7533.

[24]

Sayari A., Moudrakovski I., Reddy J. S., Ratcliffe C. I., Ripmeester J. A., Preston K. F. Chem. Mater., 1996, 8: 2080.

[25]

Fornes T., Yoon P., Hunter D., Keskkula H., Paul D. Polymer, 2002, 43: 5915.

[26]

Morgan A. B., Gilman J. W. J. Appl. Polym. Sci., 2003, 87: 1329.

[27]

Liu X., Wu Q. Polymer, 2002, 43: 1933.

[28]

Wu T. M., Chen E. C., Liao C. S. Polym. Eng. Sci., 2002, 42: 1141.

[29]

Lin B., Thümen A., Heim H. P., Scheel G., Sundararaj U. Polym. Eng. Sci., 2009, 49: 824.

[30]

Lu S., Phang I. Y., Ling C., Liu T., Zeng K. Polymer, 2004, 45: 3341.

[31]

Xiao D., Cui X. W., Li W. H., Yan D. Y. Chem. J. Chinese Universities, 2006, 27(2): 389.

[32]

Vasanthan N., Murthy N. S., Bray R. G. Macromolecules, 1998, 31: 8433.

[33]

Wang S., Hu Y., Zong R., Tang Y., Chen Z., Fan W. Appl. Clay Sci., 2004, 25: 49.

[34]

Xu D. M., Liu X., Feng J., Hao J. W. Chem. Res. Chinese Universities, 2015, 31(2): 315.

[35]

Ke C. H., Li J., Fang K. Y., Zhu Q. L., Zhu J., Yan Q., Wang Y. Z. Polym. Degrad. Stabil., 2010, 95: 763.

[36]

Qiu L., Chen W., Qu B. Polymer, 2006, 47: 922.

[37]

Naik A. D., Fontaine G., Samyn F., Delva X., Bourgeois Y., Bourbigot S. Polym. Degrad. Stabil., 2013, 98: 2653.

[38]

Lv P., Wang Z., Hu K., Fan W. Polym. Degrad. Stabil., 2005, 90: 523.

[39]

Ramani A., Dahoe A. E. Polym. Degrad. Stabil., 2014, 105: 1.

[40]

Ramani A., Hagen M., Hereid J., Zhang J. Fire Mater., 2010, 34: 77.

[41]

Braun U., Schartel B., Fichera M. A., Jäger C. Polym. Degrad. Stabil., 2007, 92: 1528.

[42]

Tang Y., Hu Y., Li B., Liu L., Wang Z., Chen Z., Fan W. J. Polym. Sci. A Polym. Chem., 2004, 42: 6163.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/