Structure and electrochemical performance of hollow tube activated carbon prepared from cotton as electrode material for electric double layer capacitor

Xinping Li , Jianling Li , Gang Yan , Zhixun Zhu , Feiyu Kang

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 82 -89.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 82 -89. DOI: 10.1007/s40242-016-5316-2
Article

Structure and electrochemical performance of hollow tube activated carbon prepared from cotton as electrode material for electric double layer capacitor

Author information +
History +
PDF

Abstract

Hollow tube-like activated carbon(HTAC) was fabricated by a simple and efficient carbonization method with cotton as carbon precursor activated by KOH without any template. The activation time from 0 to 90 min showed no significant effect on the micro-morphology, but greatly influenced the specific surface area and electrochemical performance. In the end, it was found that the sample activated for 60 min(HTAC-60) has a higher specific surface area of 2600 m2/g, a larger pore volume of 1.52 cm3/g and a greater specific capacitance of 483 F/g at a current density of 0.2 A/g in 1 mol/L H2SO4. Moreover, the sample HTAC-60 shows excellent cycle stability(only 12.2% loss after 5000 cycles) and a high energy density of 67.1 or 37.2 W·h·kg–1 at a power density of 200 or 1000 W/kg, respectively, operated in a voltage range of 0—1.0 V in 1 mol/L H2SO4. The results indicate that cotton can potentially be used as a raw material for producing low cost and high performance activated carbon electrode materials for electric double layer capacitor.

Keywords

Cotton / Hollow tube-like / Activated carbon / Electric double layer capacitor

Cite this article

Download citation ▾
Xinping Li, Jianling Li, Gang Yan, Zhixun Zhu, Feiyu Kang. Structure and electrochemical performance of hollow tube activated carbon prepared from cotton as electrode material for electric double layer capacitor. Chemical Research in Chinese Universities, 2016, 32(1): 82-89 DOI:10.1007/s40242-016-5316-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang H. N., Varghese J. L., Pilon L. Electrochemi. Acta, 2011, 56(17): 6189.

[2]

Wang Y. S., Wang C. Y., Guo C.Y., Shi Z. Q. J. Phys. Chem. Solids, 2008, 69(1): 16.

[3]

Liu Y. F., Hu Z. H., Xu K., Zheng X. W., Gao Q. Acta Phys-Chim. Sin., 2008, 24(7): 1143.

[4]

Daud W. M. A. W., Ali W. S. W. Bioresource Technol., 2004, 93: 63.

[5]

Frackowiak E., Béguin F. Carbon, 2001, 39(6): 937.

[6]

Qu D. Y. J. Power Sources, 2002, 109(2): 403.

[7]

Xia Y. D., Yang Z. X., Mokaya R. Nanoscale, 2010, 2: 639.

[8]

Kyotani T., Nagai T., Inoue S., Tomita A. Chem. Mater., 1997, 9: 609.

[9]

Xiao Q. F., Zhou X. Electrochemi. Acta, 2003, 48(15): 575.

[10]

Stoller M. D., Park S., Zhu Y., An J., Ruoff R. S. Nano Lett., 2008, 8(10): 3498.

[11]

Vivekchand S. R. C., Rout C. S., Subrahmanyam K. S., Govindaraj A., Rao C. N. R. J. Chem. Sci., 2008, 120(1): 9.

[12]

Saliger R., Fischer U., Herta C., Fricke J. J. Non-Cryst. Solids, 1998, 225: 81.

[13]

Guo Y. P., Qi J. R., Jiang Y. Q., Yang S. F., Wang Z. C., Xu H. D. Chem. Phys., 2003, 80(3): 704.

[14]

Wu F. C., Tseng R. L., Hu C. C., Wang C. C. J. Power Sources, 2004, 138(1/2): 351.

[15]

Wu F. C., Tseng R. L., Hu C. C., Wang C. C. J. Power Sources, 2005, 144(1): 302.

[16]

Kim Y. J., Lee B. J., Suezaki H., Chino T., Abe Y., Yanagiura T., Park K. C., Endo M. Carbon, 2006, 44(8): 1592.

[17]

Subramanian V., Cheng L., Stephan A. M., Nahm K. S., Thomas S., Wei B. Q. J. Phys. Chem. C, 2007, 111(20): 7527.

[18]

Balathanigaimani M. S., Shim W. G., Lee M. J., Kim C., Lee J. W., Moon H. Electrochem. Commun., 2008, 10(6): 868.

[19]

Rufford T. E., Hulicova-Jurcakova D., Khosla K., Zhu Z. H., Lu G. Q. J. Power Sources, 2010, 195(3): 912.

[20]

Rufford T. E., Hulicova-Jurcakova D., Zhu Z. H., Lu G. Q. Electrochem. Commun., 2008, 10(10): 1594.

[21]

Deng M. G. Electrochemical Capacitor Electrode Material Research, 2009.

[22]

Su F., Poh C. K., Chen J. S., Xu G., Wang D., Li Q., Lin J. Y., Lou X. W. Energy Environ. Sci., 2010, 4(3): 717.

[23]

Zhu Y. W., Murali S., Stoller M. D., Ganesh K. J., Cai W., Ferreira P. J., Pirkle A., Wallace R. M., Cychosz K. A., Thommes M. Science, 2011, 332(6037): 1537.

[24]

Wang Q., Yan J., Wang Y., Wei T., Zhang M. L., Jing X. Y., Fan Z. J. Carbon, 2014, 67: 119.

[25]

Deng H., Li G. X., Yang H. B., Tang J. P., Tang J. Y. J. Chem. Eng., 2010, 163(3): 373.

[26]

Aguilar C., García R., Soto-Garrido G., Arriagada R. J. Appl. Catal. B, Environ., 2003, 46(2): 229.

[27]

Boonamnuayvitaya V., Saeung S., Tanthapanichakoonc W. J. Sep. Purif. Technol., 2005, 42(2): 159.

[28]

Moreno-Castilla C., López-Ramón M. V., Carrasco-Marin F. Carbon, 2000, 38(14): 1995.

[29]

Nasser A., Hendawy A. E. Carbon, 2003, 41(4): 713.

[30]

Li F. J., Morris M., Chan K. Y. J. Mater. Chem., 2011, 21(24): 8880.

[31]

Lillo-Ródenas M. A., Juan-Juan J., Cazorla-Amoros D., Linares-Solano A. Carbon, 2004, 42(7): 1371.

[32]

Qu D. Y., Shi H. J. Power Sources, 1998, 74: 99.

[33]

Ismanto A. E., Wang S., Soetaredjo F. E., Ismadji S. Bioresource Technol., 2010, 101(10): 3534.

[34]

Li X., Xing W., Zhuo S. P., Zhou J., Li F., Qiao S. Z., Lu G. Q. Bioresource Technol., 2011, 102(2): 1118.

[35]

Elmouwahidi A., Zapata-Benabithe Z., Carrasco-Marín F., Moreno-Castilla C. Bioresource Technol., 2012, 111: 185.

[36]

Jiang L., Yan J. W., Hao L. X., Xue R., Sun G. Q., Yi B. L. Carbon, 2013, 56: 146.

[37]

Christen T., Carlen M. W. J. Power Sources, 2000, 91(2): 210.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/