Structure and electrochemical performance of hollow tube activated carbon prepared from cotton as electrode material for electric double layer capacitor
Xinping Li , Jianling Li , Gang Yan , Zhixun Zhu , Feiyu Kang
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 82 -89.
Structure and electrochemical performance of hollow tube activated carbon prepared from cotton as electrode material for electric double layer capacitor
Hollow tube-like activated carbon(HTAC) was fabricated by a simple and efficient carbonization method with cotton as carbon precursor activated by KOH without any template. The activation time from 0 to 90 min showed no significant effect on the micro-morphology, but greatly influenced the specific surface area and electrochemical performance. In the end, it was found that the sample activated for 60 min(HTAC-60) has a higher specific surface area of 2600 m2/g, a larger pore volume of 1.52 cm3/g and a greater specific capacitance of 483 F/g at a current density of 0.2 A/g in 1 mol/L H2SO4. Moreover, the sample HTAC-60 shows excellent cycle stability(only 12.2% loss after 5000 cycles) and a high energy density of 67.1 or 37.2 W·h·kg–1 at a power density of 200 or 1000 W/kg, respectively, operated in a voltage range of 0—1.0 V in 1 mol/L H2SO4. The results indicate that cotton can potentially be used as a raw material for producing low cost and high performance activated carbon electrode materials for electric double layer capacitor.
Cotton / Hollow tube-like / Activated carbon / Electric double layer capacitor
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
/
| 〈 |
|
〉 |