Significantly enhanced performance of g-C3N4/Bi2MoO6 films for photocatalytic degradation of pollutants under visible-light irradiation

Yujun Liu , Feng Zhou , Su Zhan , Yifan Yang , Yanfeng Yin

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 284 -290.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 284 -290. DOI: 10.1007/s40242-016-5315-3
Article

Significantly enhanced performance of g-C3N4/Bi2MoO6 films for photocatalytic degradation of pollutants under visible-light irradiation

Author information +
History +
PDF

Abstract

The films of photocatalysts have been widely used in decomposition pollutants. In this study, the films were successfully prepared from Bi2MoO6 and g-C3N4/Bi2MoO6 by a simple method, respectively. The samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy( TEM), Fourier transform infrared spectroscopy(FTIR), photoluminescence(PL), UV-Vis diffuse reflectance spectroscopy( DRS) and electrochemical experiments to investigate crystalline structure, morphology, composition and properties. The photocatalytic activity of the photocatalyst films for the pollutants was evaluated by degradation of methylene blue(MB) in aqueous solution under visible light irradiation. Experiments revealed that the film of g-C3N4/Bi2MoO6 exhibited higher photocatalytic ability compared to the single-component photocatalyst, and proved its stability. The superior catalytic performance can be attributed to the effective separation of electron-hole pairs and the reduced rate of recombination. This work is of great value for the preparation of photocatalysts films.

Keywords

Film / g-C3N4 / Bi2MoO6 / Photocatalyst

Cite this article

Download citation ▾
Yujun Liu, Feng Zhou, Su Zhan, Yifan Yang, Yanfeng Yin. Significantly enhanced performance of g-C3N4/Bi2MoO6 films for photocatalytic degradation of pollutants under visible-light irradiation. Chemical Research in Chinese Universities, 2016, 32(2): 284-290 DOI:10.1007/s40242-016-5315-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xiong Z. G., Dou H. Q., Pan J. H., Ma J. Z., Xu C., Zhao X. S. Cryst. Eng. Comm., 2010, 12(11): 3455.

[2]

Jiang X. D., Shi A. Q., Wang Y. Q., Li Y. Z., Pan C. X. Nanoscale, 2011, 3(9): 3573.

[3]

Ismail A. A., Bahnemann D. W., Bannat I., Wark M. J. Phys. Chem. C, 2009, 113(17): 7429.

[4]

Shang M., Wang W. Z., Sun S. M., Zhou L., Zhang L. J. Phys. Chem. C, 2008, 112(28): 10407.

[5]

Yang X. X., Cao C. D., Erickson L., Hohn K., Maqhirang R., Klabunde K. J. Catal., 2008, 260(1): 128.

[6]

Yu J. G., Li Q. L., Shu Z. Electrochimica Acta, 2011, 56: 6293.

[7]

Zhang C., Zhu Y. F. Chem. Mater., 2005, 17(13): 3537.

[8]

Fu H. B., Pan C. S., Yao W. Q., Zhu Y. F. J. Phys. Chem. B, 2005, 109(47): 22432.

[9]

Zhang L. S., Wang W. Z., Zhou L., Xu H. L. Small, 2007, 3(9): 1618.

[10]

Nowotny M. K., Sheppard L. R., Bak T., Nowotny J. J. Phys. Chem. C, 2008, 112(14): 5275.

[11]

Akpan U. G., Hameed B. H. J. Hazard. Mater., 2009, 170(2/3): 520.

[12]

Rajeshwar K., Tacconi N. R. Chem. Soc. Rev., 2009, 38(7): 1984.

[13]

Kudo A., Miseki Y. Chem. Soc. Rev., 2009, 38(1): 253.

[14]

Tian G. H., Chen Y. J., Zhou W., Pan K., Dong Y. Z., Tianand C. G., Fu H. G. J. Mater. Chem., 2011, 21(3): 887.

[15]

Li H., Liu J. Y., Hou W. G., Du N., Zhang R. J., Tao X. T. Appl. Catal. B, 2014, 160: 89.

[16]

Yin W., Wang W., Sun S. Catal. Comm., 2010, 11(7): 647.

[17]

Zhang L. H., Wang W. Z., Chen Z. G., Zhou L., Xu H. L., Zhu W. J. Mater. Chem., 2007, 17(24): 2526.

[18]

Fu J., Chang B., Tian Y., Xi F., Dong X. J. Mater. Chem. A, 2013, 1(9): 3083.

[19]

Xu J., Zhang L., Shi R., Zhu Y. J. Mater. Chem. A, 2013, 1(46): 14766.

[20]

Hou Y., Wen Z., Cui S., Guo X., Chen J. Adv. Mater., 2013, 25(43): 6291.

[21]

Wang X. C., Blechert S., Antonietti M. ACS Catal., 2012, 2(8): 1596.

[22]

Wang Y., Wang X., Antonietti M. Angew. Chem. Int. Ed., 2012, 51(1): 68.

[23]

Zhan S., Zhou F., Huang N. B., Yin Y. F., Wang M., Yang Y. F., Liu Y. J. J. Mole. Cata. A Chem., 2015, 401: 41.

[24]

Jun Y. S., Lee E. Z., Wang X., Hong W. H., Stucky G. D., Thomas A. Adv. Funct. Mater., 2013, 23(29): 3661.

[25]

Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J. M., Domen K., Antonietti M. Nat. Mater., 2009, 8(1): 76.

[26]

Hong Z. H., Shen B. A., Chen Y. L., Lin B. Z., Gao B. F. J. Mater. Chem. A, 2013, 1(38): 11754.

[27]

Jiang D. L., Zhu J., Chen M., Xie J. M. J. Coll. Inter. Sci., 2014, 417: 115.

[28]

Li F. T., Zhao Y., Wang Q., Wang X. J., Hao Y. J., Liu R. H., Zhao D. S. J. Hazard. Mater., 2015, 283: 371.

[29]

Qu M., Zhong Q., Zhang S. L., Yu L. M. J. Alloys Comp., 2015, 626: 401.

[30]

Li D., Wu Z. D., Xing C. S., Jiang D. L., Chen M., Shi W. D., Yuan S. Q. J. Mole. Catal. A: Chem., 2014, 395: 261.

[31]

Ye S., Qiu L. G., Yuan Y. P., Zhu Y. J., Xia J., Zhu J. F. J. Mater. Chem. A, 2013, 1(9): 3008.

[32]

Zhou F., Shi R., Zhu Y. F. J. Mol. Catal. A: Chem., 2011, 340(1/2): 77.

[33]

Krenzke L. D., Keulks G. W. J. Catal., 1980, 64(2): 295.

[34]

Zang Y. P., Li L. P., Xu Y. S., Zou Y., Li G. S. J. Mater. Chem. A, 2014, 2(38): 15774.

[35]

Xu Y. S., Zhang W. D. Appl. Catal. B:Environ., 2013, 140/141: 306.

[36]

Xu Y. S., Zhang W. D. Chem. Cat. Chem., 2013, 5(8): 2343.

[37]

Zhao X., Zhu Y. F. Environ. Sci. Technol., 2006, 40(10): 3367.

[38]

Wang T., Si Y. J. Mater. Rev., 2012, 26: 36.

[39]

Wang Y. J., Wang Z. X. Cryst. Eng. Comn., 2012, 14(15): 5056.

[40]

Li H., Liu C., Li K., Wang H. J. Mater. Sci., 2008, 43(22): 7026.

[41]

Zhang L., Xu T., Zhao X., Zhu Y. Appl. Catal. B, 2010, 98(3/4): 138.

[42]

Sun L., Zhao X., Jia C. J., Zhou Y., Cheng X., Li P., Liu L., Fan W. L. J. Mater. Chem., 2012, 22(44): 23428.

[43]

Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W. Chem. Rev., 1995, 95: 69.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/