Trichloroacetic acid removal by a reductive spherical cellulose adsorbent

Chunxiang Lin , Chen Tian , Yifan Liu , Wei Luo , Moshuqi Zhu , Qiaoquan Su , Minghua Liu

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 95 -99.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 95 -99. DOI: 10.1007/s40242-016-5304-6
Article

Trichloroacetic acid removal by a reductive spherical cellulose adsorbent

Author information +
History +
PDF

Abstract

A novel spherical cellulose adsorbent with amide and sulphinate groups was used for a first reduction of trichloroacetic acid(TCAA) and a subsequent adsorption of generated species, haloacetic acids. The removal mechanism involved TCAA reduction by sulphinate groups and the adsorption of the haloacetic acids through electrostatic interaction with amide group. Investigation of product formation and subsequent disappearance reveals that the reduction reactions proceed via sequential hydrogenolysis, and transform to acetate ultimately. Adsorption of haloacetic acids was ascertained by low chloride mass balances(89.3%) and carbon mass balances(75.1%) in solution. The pseudo-first-order rate constant for TCAA degradation was (0.93±0.12) h–1. Batch experiments were conducted to investigate the effect of pH value on the reduction and adsorption process. The results show that the reduction of TCAA by sulphinate groups requires higher pH values while the electrostatic attraction of haloacetic acids by amino group is favorable in more acidic media.

Keywords

Cellulose adsorbent / Reduction / Adsorption / Trichloroacetic acid / Degradation

Cite this article

Download citation ▾
Chunxiang Lin, Chen Tian, Yifan Liu, Wei Luo, Moshuqi Zhu, Qiaoquan Su, Minghua Liu. Trichloroacetic acid removal by a reductive spherical cellulose adsorbent. Chemical Research in Chinese Universities, 2016, 32(1): 95-99 DOI:10.1007/s40242-016-5304-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang W., Zhu L. Z. J. Hazard. Mater., 2010, 174: 40.

[2]

Li X., Ren Y., Qiang L., Zhao H. Chem. Res. Chinese Universities, 2004, 20(3): 285.

[3]

Lin Y. L., Chang P. C., Chang E. E. J. Hazard. Mater., 2006, 137: 324.

[4]

Mesdaghinia A., Rafiee M. T., Vaezi F., Mahvi A., Torabian A., Ghasri A. Int. J. Environ. Sci. Technol., 2005, 2: 335.

[5]

Koivunen J., Heinonen-Tanski H. Water Res., 2005, 39: 1519.

[6]

Richardson S. D., Thruston J.r. A. D., Caughran T. V., Chen P. H., Collette T. W., Schenck K. M., Lykins B. W. J.r., Rav-Acha C., Glezer V. Water Air Soil Pollut., 2000, 123: 95.

[7]

McRae B. M., LaPara T. M., Hozalski R. M. Chemosphere, 2004, 55: 915.

[8]

Bayless W., Andrews R. J. Water Health, 2008, 6: 15.

[9]

Singer P. C. Proceedings of the 1999 AWWA Water Quality Technology Conference, 1999.

[10]

Wang K. P., Guo J. S., Yang M., Junjic H., Deng R. S. J. Hazard Mater., 2009, 162: 1243.

[11]

Deng S., Ting Y. P. Environ. Sci. Technol., 2005, 39: 8490.

[12]

Deng S., Ting Y. P., Yu G. Water Sci. Technol., 2006, 54: 1.

[13]

Sanghi R., Sankararamakrishnan N., Dave B. C. J. Hazard. Mater., 2009, 69: 1074.

[14]

Escudero C., Fiol N., Poch J., Villaescusa I. J. Hazard. Mater., 2009, 170: 286.

[15]

Wu J., Zhang H., He P., Yao Q., Shao L. J. Hazard. Mater., 2010, 176: 697.

[16]

Li J., Lin Q., Zhang X. J. Hazard. Mater., 2010, 182: 598.

[17]

Liu B., Huang Y. J. Mater. Chem., 2011, 21: 17413.

[18]

Liu Y., Fu J., Zhou Z., Yu X., Yao B. Chem. Res. Chinese Universities, 2000, 16(3): 246.

[19]

Ramachandran S., Coradin T., Jain P. K., Verma S. K. Silicon, 2009, 1: 215.

[20]

Alvarez G. S., Foglia M. L., Camporotondi D. E., Tuttolomondo M. V., Desimone M. F., Díaz L. E. J. Mater. Chem., 2011, 21: 6359.

[21]

Deshpande K., Cheung S., Rao M. S., Dave B. C. J. Mater. Chem., 2005, 15: 2997.

[22]

Shevchenko N., Zaitsev V., Walcarius A. Environ. Sci. Technol., 2008, 42: 6922.

[23]

Demoisson F., Mullet M., Humbert B. Environ. Sci. Technol., 2005, 39: 8747.

[24]

Cao J., Li X., Zhang W. Div. Environ. Chem., 2007, 47: 996.

[25]

Li Y., Jin J. Z., Li T., Li S. Water Sci. Technol., 2011, 63: 2781.

[26]

Oh Y. J., Song H., Shin W. S., Choi S. J., Kim Y. H. Chemosphere, 2007, 66: 858.

[27]

Sadiq R., Rodriguez M. J. J. Environ. Manage, 2004, 73: 1.

[28]

Esclapez M. D., Tudela I., Díez-García M. I., Saez V., Rehorek A., Bonete P., Gonzalez-Garcia J. Chem. Eng. J., 2012, 197: 231.

[29]

Lin C., Zhan H., Liu M., Fu S., Lucia L. A. Langmuir, 2009, 25: 10116.

[30]

Lin C., Zhan H., Liu M., Fu S., Zhang J. Carbohyd. Polym., 2009, 78: 377.

[31]

Lin C., Zhan H., Liu M., Fu S., Huang L. J. Appl. Polym. Sci., 2010, 118: 399.

[32]

Lin C., Zhan H., Liu S., Fu S., Lucia L. A. Chem. Res. Chinese Universities, 2013, 29(1): 159.

[33]

Lin C., Zhan H., Liu M., Habibi Y., Fu S., Lucia L. A. J. Appl. Polym. Sci., 2013, 127: 4840.

[34]

Li Y. P., Cao H. B., Zhang Y. Chemosphere, 2006, 63: 359.

[35]

Zhang L., Arnold W. A., Hozalski R. M. Environ. Sci. Technol., 2004, 38: 6881.

[36]

Hozalski R. M., Zhang L., Arnold W. A. Environ. Sci. Technol., 2011, 35: 2258.

[37]

Zhao B., Li X., Li W., Yang L., Li J., Xia W., Zhou L., Wang F., Zhao C. Chem. Eng. J., 2015, 273: 527.

[38]

Niu G. J., Liu W., Wang T., Ni J. R. J. Colloid Interf. Sci., 2013, 401: 133.

[39]

Shen H., Pan S., Zhang Y., Huang X., Gong H. Chem. Eng. J., 2012, 183: 180.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/