Measurement and prediction on the surface properties of dimethyl sulfoxide/water mixtures

Ping Lü , Guanjia Zhao , Xiaolong Zhang , Jianguo Yin , Junfeng Bao

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 100 -105.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 100 -105. DOI: 10.1007/s40242-016-5297-1
Article

Measurement and prediction on the surface properties of dimethyl sulfoxide/water mixtures

Author information +
History +
PDF

Abstract

Pendent drop method was adopted to measure the surface tension of dimethyl sulfoxide(DMSO)/water mixtures. A new pendent drop apparatus was built up and checked with water, and a good agreement of our data with literature could be found. With the new apparatus, the surface tensions of nine DMSO/water mixtures with mass fractions of water from 0.1 to 0.9 were investigated in a temperature range of 298―338 K. The expanded uncertainty for surface tension measurement was estimated to be 0.5% at a confidence level of 95%(k=2) in the whole temperature range. A thermodynamic-based relation was used to predict the surface properties of DMSO/water mixtures. Based on the relation and Gibbs adsorption theory, a prediction model was proposed for the calculation of surface relative excess and the thickness of the surface molecule layer.

Keywords

Surface tension / Pendent drop / Dimethyl sulfoxide / Water

Cite this article

Download citation ▾
Ping Lü, Guanjia Zhao, Xiaolong Zhang, Jianguo Yin, Junfeng Bao. Measurement and prediction on the surface properties of dimethyl sulfoxide/water mixtures. Chemical Research in Chinese Universities, 2016, 32(1): 100-105 DOI:10.1007/s40242-016-5297-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Balakin K.V., Savchuk N. P., Tetko I. V. Curr. Med. Chem., 2006, 13: 223.

[2]

Yuan Z., Xu Q., Sang L., Ding F. Chem. J. Chinese Universities, 2014, 35(9): 1994.

[3]

Pruett D., Felker L. J. Chem. Eng. Data, 1985, 30: 452.

[4]

Zhang K., Meng X. Y., Gu J. W., Wu J. J. Eng. Thermophys., 2013, 34: 2001.

[5]

Sprow F. B., Prausnitz J. Can. J. Chem. Eng., 1967, 45: 25.

[6]

Adams J. An Attempt to Test the Theories of Capillary Action, 1883, Cambridge: University Press.

[7]

Poling B. E., Prausnitz J., Oconnell J. P. The Properties of Gases and Liquids, 2001, New York: McGraw-Hill.

[8]

Chattoraj D. Adsorption and the Gibbs Surface Excess, 2012, New York and London: Springer Science & Business Media.

[9]

Rafati A., Bagheri A., Khanchi A., Ghasemian E., Mojgan N. J. Colloid Interface Sci., 2011, 355: 252.

[10]

Wang X., Yang F., Gao Y., Liu Z. J. Chem. Thermodyn., 2013, 57: 145.

[11]

Lemmon M. L., McLinden M. O. NIST Standard Reference Database 23, Version 8.0, 2007.

[12]

Vargaftik N., Volkov B., Voljak L. J. Phys. Chem. Ref. Data, 1983, 12: 817.

[13]

Sassa Y., Konishi R., Katayama T. J. Chem. Eng. Data, 1974, 19: 44.

[14]

Korosi G., Kovats E. S. J. Chem. Eng. Data, 1981, 26: 323.

[15]

Iqbal M. J., Rauf M. A., Ijaz N. J. Chem. Eng. Data, 1992, 37: 45.

[16]

Markarian S. A., Terzyan A. M. J. Chem. Eng. Data, 2007, 52: 1704.

[17]

Markarian S. A., Terzyan A. M. J. Chem. Thermodyn., 2009, 41: 1413.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/