Sensitive and selective fluorescent chemosensors combining multiple PET processes for Ag+ sensing

Jie Su , Shanshan Huang , Song He , Xianshun Zeng

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 20 -27.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 20 -27. DOI: 10.1007/s40242-016-5296-2
Article

Sensitive and selective fluorescent chemosensors combining multiple PET processes for Ag+ sensing

Author information +
History +
PDF

Abstract

In this work, a novel fluorescent chemosensor combining multiple photoinduced electron transfer(PET) processes for the detection of Ag+ ion was synthesized. The PET processes were derived from the lone electron pair of the selenium donors and the tertiary nitrogen atom of the coumarin fluorophore, which have not yet been used in the fluorescent chemosensor designed for Ag+ ion. Interestingly, the chemosensors showed fluorescent responses to Ag+ ion with a fluorescence enhancement factor of 3―5-fold by blocking the intramolecular PET quenching pathways. Furthermore, the probe exhibited high selectivity and sensitivity for Ag+ ion over other relevant species with detection limit down to 10 nmol/L level. The chemosensors also showed excellent performances in analyzing natural water samples. The chemosensors developed herein represent a new strategy for the PET fluorescent chemosensor design for the detection of Ag+ ion.

Keywords

Chemosensor / Photoinduced electron transfer / Fluorescence / Coumarin / Silver ion

Cite this article

Download citation ▾
Jie Su, Shanshan Huang, Song He, Xianshun Zeng. Sensitive and selective fluorescent chemosensors combining multiple PET processes for Ag+ sensing. Chemical Research in Chinese Universities, 2016, 32(1): 20-27 DOI:10.1007/s40242-016-5296-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nolan E. M., Lippard S. J., Chem. Rev., 2008, 108(9): 3443.

[2]

de Silva A. P., Gunaratne H. Q. N., Gunnlaugsson T., Huxley A. J. M., McCoy C. P., Rademacher J. T., Rice T. E. Chem. Rev., 1997, 97(5): 1515.

[3]

Amendola V., Fabbrizzi L., Forti F., Licchelli M., Mangano C., Pallavicini P., Poggi A., Sacchi D., Taglieti A. Coord. Chem. Rev., 2006, 250(23/24): 273.

[4]

Yin J., Hu Y., Yoon J. Chem. Soc. Rev., 2015, 44: 4619.

[5]

Zhu L., Younes A. H., Yuan Z., Clark R. J. J. Photoch. Photobio. A, 2015, 311: 1.

[6]

Li H., Fan J., Peng X. Chem. Soc. Rev., 2013, 42: 7943.

[7]

Lee J. H., Lee J., Jung S. H., Hyun T. K., Feng M., Kim J. Y., Lee J. H., Lee H., Kim J. S., Kang C., Kwon K. Y., Jung J. H. Chem. Commun., 2015, 51: 7463.

[8]

Feng Q. L., Wu J., Chen G. Q., Cui F. Z., Kim T. N., Kim J. O. J. Biomed. Mater. Res., 2000, 52: 662.

[9]

Pu W. D., Zhao Z., Wu L. P., Liu Y., Zhao H. W. J. Nanosci. Nanotechno., 2015, 15(8): 5524.

[10]

Russell A. D., Hugo W. B. Prog. Med. Chem., 1994, 31: 351.

[11]

Melaiye A., Sun Z. H., Hindi K., Milsted A., Ely D., Reneker D. H., Tessier C. A., Youngs W. J. J. Am. Chem. Soc., 2005, 127(7): 2285.

[12]

Holt K. B., Bard A. J. Biochemistry, 2005, 44(39): 13214.

[13]

Sondi I., Salopek-Sondi B. J. Colloid Interface Sci., 2004, 275(1): 177.

[14]

Lansdown A. B. J. Wound Care, 2002, 11(4): 125.

[15]

Yamanaka M., Hara K., Kudo J. Appl. Environ. Microbiol., 2005, 71(11): 7589.

[16]

Ratte H. T. Environ. Toxicol. Chem., 1999, 18(1): 89.

[17]

Zhang X. B., Han Z. X., Fang Z. H., Shen G. L., Yu R. Q. Anal. Chim. Acta, 2006, 562(2): 210.

[18]

Kumar A., Vemula P. K., Ajayan P. M., John G. Nat. Mater., 2008, 7(3): 236.

[19]

Sambhy V. M., Bride M. M., Peterson B. R., Sen A. J. Am. Chem. Soc., 2006, 128(30): 9798.

[20]

Ceresa A., Radu A., Peper S., Bakker E., Pretsch E. Anal. Chem., 2002, 74(16): 4027.

[21]

Gumpu M. B., Sethuraman S., Krishnan U. M., Rayappan J. B. B. Sens. Actuators B, 2015, 213: 515.

[22]

Javanbakht M., Ganjali M. R., Norouzi P., Badiei A., Hasheminasab A. Electroanalysis, 2007, 19(12): 1307.

[23]

Tong H., Wang L. X., Jing X. B., Wang F. S. Macromolecules, 2002, 35(19): 7169.

[24]

Zhou N., Wang L., Thompson D. W., Zhao Y. Org. Lett., 2008, 10(14): 3001.

[25]

Shamsipur M., Alizadeh K., Hosseini M., Caltagirone C., Lippolis V. Sens. Actuators B, 2006, 113: 892.

[26]

Huang C., Peng X., Lin Z., Fan J., Ren A., Sun D. Sens. Actuators B, 2008, 133: 113.

[27]

Zhang J. F., Zhou Y., Yoon J., Kim J. S. Chem. Soc. Rev., 2011, 40: 3416.

[28]

Yang R. H., Chan W. H., Lee A. W. M., Xia P. F., Zhang H. K., Li K. A. J. Am. Chem. Soc., 2003, 125(10): 2884.

[29]

Rurack K., Kollmannsberger M., Resch-Genger U., Daub J. J. Am. Chem. Soc., 2000, 122(5): 968.

[30]

Coskun A., Akkaya E. U. J. Am. Chem. Soc., 2005, 127(30): 10464.

[31]

Chatterjee A., Santra M., Won N., Kim S., Kim J. K., Kim S. B., Ahn K. H. J. Am. Chem. Soc., 2009, 131(6): 2040.

[32]

Pandey M. D., Mishra A. K., Chandrasekhar V., Verma S. Inorg. Chem., 2010, 49(5): 2020.

[33]

Swamy K. M. K., Kim H. N., Soh J. H., Kim Y., Kim S. J., Yoon J., Chem. Commun., 2009, 1234

[34]

Park C. S., Lee J. Y., Kang E. J., Lee J. E., Lee S. S. Tetrahedron Lett., 2009, 50: 671.

[35]

Ishikawa J., Sakamoto H., Nakao S., Wada H. J. Org. Chem., 1999, 64(6): 1913.

[36]

Singh P., Kumar S. Tetrahedron, 2006, 62(26): 6379.

[37]

Zhao B., Xu Y., Fang Y., Wang L., Deng Q. Tetrahedron Lett., 2015, 56: 2460.

[38]

Liu L., Zhang G., Xiang J., Zhang D., Zhu D. Org. Lett., 2008, 10(20): 4581.

[39]

Wang N. J., Sun C. M., Chung W. S. Sens. Actuators B, 2012, 171/172: 984.

[40]

Liu Q., Liu C., Chang L., He S., Lu Y., Zhao L., Zeng X. RSC Advance, 2014, 4: 14361.

[41]

Liu C., Huang S., Lu Y., He S., Zhao L., Zeng X. RSC Advance, 2014, 4: 16109.

[42]

Huang S., He S., Lu Y., Wei F., Zeng X., Zhao L. Chem. Commun., 2011, 47: 2048.

[43]

Zeng X., Han X., Chen L., Li Q., Xu F., He X., Zhang Z. Z. Tetrahedron Lett., 2002, 43: 131.

[44]

Zeng X., Leng X., Chen L., Sun H., Xu F., Li Q., He X., Zhang Z. Z. J. Chem. Soc., Perkin Trans., 2002, 2: 796.

[45]

Boiocchi M., Boca D. L., Gómez E. D., Fabbrizzi L., Licchelli M., Monzani E. J. Am. Chem. Soc., 2004, 126(50): 16507.

[46]

Masuhara H., Shioyama H., Saito T., Hamada K., Yasoshima S., Mataga N. J. Phys. Chem., 1984, 88(24): 5868.

[47]

Munakata M., Wu L. P., Kuroda-Sowa T. Adv. Inorg. Chem., 1999, 46: 173.

[48]

Qin D., Zeng X., Li Q., Xu F., Song H., Zhang Z. Z. Chem. Commun., 2007, 147.

[49]

Lin W., Cao X., Ding Y., Yuan L., Long L. Chem. Commun., 2010, 46: 3529.

[50]

Mukherjee A. J., Zade S. S., Singh H. B., Sunoj R. B. Chem. Rev., 2010, 110(7): 4357.

[51]

Lee Y. J., Seo D., Kwon J. Y., Son G., Park M. S., Choi Y. H., Soh J. H., Lee H. N., Lee K. D., Yoon J. Tetrahedron, 2006, 62(52): 12340.

[52]

Soh N., Sakawaki O., Makihara K., Odo Y., Fukaminato T., Kawai T., Irie M., Imato T. Bioorg. Med. Chem., 2005, 13(4): 1131.

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/