Dealloyed silver nanoparticles as efficient catalyst towards oxygen reduction in alkaline solution

Qinghua Cui , Yelong Zhang , Zhangquan Peng

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 106 -111.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 106 -111. DOI: 10.1007/s40242-016-5277-5
Article

Dealloyed silver nanoparticles as efficient catalyst towards oxygen reduction in alkaline solution

Author information +
History +
PDF

Abstract

Silver nanoparticles(Ag NPs) were prepared by dealloying Mg-Ag alloy precursor. The obtained Ag NPs have an average ligament size of (50±10) nm. Electrocatalytic activity of Ag NPs towards oxygen reduction reaction( ORR) in 0.1 mol/L NaOH solution was assessed via cyclic voltammetry(CV), rotating ring disk electrode(RRDE) techniques, and electrochemical impedance spectroscopy(EIS). The electrochemical active area for the ORR was evaluated by means of the charge of the underpotential deposition(UPD) of lead(Pb) on Ag NPs. The CV results indicate that Ag NPs have a higher current density and more positive onset potential than the bulk Ag electrode. RRDE was employed to determine kinetic parameters for O2 reduction. Ag NPs exhibit a higher kinetic current density of 25.84 mA/cm2 and a rate constant of 5.45×10–2 cm/s at–0.35 V vs. Hg/HgO. The number of electrons(n) involved in ORR is close to 4. Further, EIS data show significantly low charge transfer resistances on the Ag NPs electrode. The results indicate that the prepared Ag NPs have a high activity and are promising catalyst for ORR in alkaline solution.

Keywords

Silver nanoparticles / Electrochemical activity / Oxygen reduction reaction

Cite this article

Download citation ▾
Qinghua Cui, Yelong Zhang, Zhangquan Peng. Dealloyed silver nanoparticles as efficient catalyst towards oxygen reduction in alkaline solution. Chemical Research in Chinese Universities, 2016, 32(1): 106-111 DOI:10.1007/s40242-016-5277-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Borup R., Meyer J., Pivovar B., Kim Y. S., Mukundan R., Garland N., Myers D., Wilson M., Garzon F., Wood D., Zelenary P., More K., Stroh K., Zawodzinski T., Macgrath J. E., Inaba M., Miyatake K., Hori M., Ota K., Ogumi Z., Miyata S., Nishikata A., Siroma Z., Uchimoto Y., Yasuda K., Kimijima K., Iwashita N. Chem. Rev., 2007, 107(10): 3904.

[2]

Liang Y., Li Y., Wang H., Zhou J., Wang J., Regier T., Dai H. Nat. Mater., 2011, 10(10): 780.

[3]

Liu M., Zhang R., Chen W. Chem. Rev., 2014, 114(10): 5117.

[4]

Voiry D., Yamaguchi H., Li J., Silva R., Alves D. C. B., Fujita T., Chen M., Asefa T., Shenoy V. B., Eda G., Chhowalla M. Nat. Mater., 2013, 12(9): 850.

[5]

Suntivich J., Gasteiger H. A., Yabuuchi N., Nakanishi H., Goodenough J. B., Yang S. H. Nat. Chem., 2011, 3(7): 546.

[6]

Cui C. H., Li H. H., Yu J. W., Gao M. R., Yu S. H. Angew. Chem. Int. Ed., 2010, 49(48): 9149.

[7]

Lu Y. C., Xu Z., Gasteiger H. A., Chen S., Hamad-Schifferli K., Yang S. H. J. Am. Chem. Soc., 2010, 132(35): 12170.

[8]

Wang Y. J., Wilkinson D. P., Zhang J. Chem. Rev., 2011, 111(12): 7625.

[9]

Guo S. J., Zhang S., Sun S. H. Angew. Chem. Int. Ed., 2013, 52(33): 8526.

[10]

Gewirth A. A., Thorum M. S. Inorg. Chem., 2010, 49(8): 3557.

[11]

Choe J. E., You J. M., Yun M., Lee K., Ahmed M. S., Üstündag Z., Jeon S. J. Nanosci. Nanotechnol., 2015, 15(8): 5684.

[12]

Lee K., Ahmed M. S., Jeon S. J. Electrochem. Soc., 2015, 162(1): F1.

[13]

Lu Y., Chen W. J. Power Sources, 2012, 197: 107.

[14]

Zhao D. J., Ma S. Y. Chem. Res. Chinese Universities, 2015, 31(3): 447.

[15]

Jiang H. J., Wang F. B., Gao Y., Xing W., Shi B. C., Feng Y. Y., Yang H., Lu T. H. Chem. Res. Chinese Universities, 2003, 19(1): 54.

[16]

Jeong E., Ahmed M. S., Jeong H., Lee E., Jeon S. Bull. Korean Chem. Soc., 2011, 32(3): 800.

[17]

Wiley B., Sun Y., Xia Y. Acc. Chem. Res., 2007, 40(10): 1067.

[18]

Demarconnay L., Coutanceau C., Leger J. M. Electrochim. Acta, 2004, 49(25): 4513.

[19]

Blizanac B. B., Ross P. N., Markovic N. M. J. Phys. Chem. B, 2006, 110(10): 4735.

[20]

Blizanac B. B., Ross P. N., Markovic N. M. Electrochim. Acta, 2007, 52(6): 2264.

[21]

Ahern A. J., Nagle L. C., Burke L. D. J. Solid State Electrochem., 2002, 6(7): 451.

[22]

Chatenet M., Genies-Bultel L., Aurousseau M., Durand R., Andolfatto F. J. Appl. Electrochem., 2002, 32(10): 1131.

[23]

Kou T. Y., Li D. W., Zhang C., Zhang Z. H., Yang H. J. Mol. Catal. A: Chem., 2014, 382: 55.

[24]

Singh P., Buttry D. A. J. Phys. Chem. C, 2012, 116(19): 10656.

[25]

Guo S., Zhang X., Zhu W., He K., Su D., Mendoza-Garcia A., Ho S. F., Lu G., Sun S. J. Am. Chem. Soc., 2014, 136(42): 15026.

[26]

Herrero E., Buller L. J., Abruna H. D. Chem. Rev., 2001, 101(7): 1897.

[27]

Kirowa-Eisner E., Bonfil Y., Tzur D., Gileadi E. J. Electroanal. Chem., 2003, 552: 171.

[28]

Stevenson K. J., Hatchett D. W., White H. S. Langmuir, 1996, 12(2): 494.

[29]

Damjanovic A., Genshaw M. A., Bockris J. O. M. J. Electrochem. Soc., 1967, 114: 466.

[30]

Reyes-Rodriguez J. L., Godinez-Salomon F., Leyva M. A., Solorza-Feria O. Int. J. Hydrog. Energy, 2013, 38(28): 12634.

[31]

Bard A. J., Faulkner L. R. Electrochemical Methods, 1980, New York: Wiley.

[32]

Chatenet M., Aurousseau M., Durand R., Andolfatto F. J. Electrochem. Soc., 2003, 150(3): 47.

[33]

Lima F. H. B., Ticianelli E. A. Electrochim. Acta, 2004, 49(24): 4091.

[34]

Sepa D. B., Vojnovic M. V., Vracar L. J. M., Damjanovic A. Electrochim. Acta, 1981, 26(6): 781.

[35]

Tammeveski K., Tenno T., Claret J., Ferrater C. Electrochim. Acta, 1997, 42(19): 893.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/