Ni-Catalyzed cross coupling of aryl grignard reagents with aryl halides in a nonpolar solvent and an efficient synthesis of biaryls under neat conditions

Qiang Wu , Rizhe Jin , Chuanqing Kang , Wenhui Chen , Zheng Bian , Xiaoye Ma , Jinying Ding , Haiquan Guo , Xuepeng Qiu , Lianxun Gao

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 55 -61.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 55 -61. DOI: 10.1007/s40242-016-5261-0
Article

Ni-Catalyzed cross coupling of aryl grignard reagents with aryl halides in a nonpolar solvent and an efficient synthesis of biaryls under neat conditions

Author information +
History +
PDF

Abstract

This study details Ni-catalyzed cross coupling of aryl Grignard reagents with aryl halides in toluene, a nonpolar solvent with a high boiling point. The reaction was applied for the synthesis of various biaryls in good yields without the introduction of a large steric ligand. The Kumada-Tamao-Corriu(KTC) reaction in toluene was then successfully modified to proceed under neat conditions for the efficient syntheses of symmetrical biaryls, particularly in large-scale preparations. Unactivated aryl chlorides show higher reactivity than aryl bromides, particularly under neat conditions. Mechanistic investigations suggest a radical procedure for the catalytic cycle, and the origin of the radical intermediates being aryl halides.

Keywords

Cross-coupling / Nickel / Biaryl / Reaction mechanism / Neat condition

Cite this article

Download citation ▾
Qiang Wu, Rizhe Jin, Chuanqing Kang, Wenhui Chen, Zheng Bian, Xiaoye Ma, Jinying Ding, Haiquan Guo, Xuepeng Qiu, Lianxun Gao. Ni-Catalyzed cross coupling of aryl grignard reagents with aryl halides in a nonpolar solvent and an efficient synthesis of biaryls under neat conditions. Chemical Research in Chinese Universities, 2016, 32(1): 55-61 DOI:10.1007/s40242-016-5261-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Riener K., Haslinger S., Raba A., Hogerl M. P., Cokojia M., Herrmann W. A., Kuhn F. E. Chem. Rev., 2014, 114(10): 5215.

[2]

Tasker S. Z., Standley E. A., Jamison T. F. Nature, 2014, 509: 299.

[3]

Kambe N., Iwasaki T., Terao J. Chem. Soc. Rev., 2011, 40(10): 4937.

[4]

Knappke C. E. I., Jacobi von Wangelin A. Chem. Soc. Rev., 2011, 40(10): 4948.

[5]

Cahiez G., Moyeux A. Chem. Rev., 2010, 110(3): 1435.

[6]

Rudolph A., Lautens M. Angew. Chem. Int. Ed., 2009, 48(15): 2656.

[7]

Wu X. M., Wang Y., Guo S. R. Chem. Res. Chinese Universities, 2010, 26(2): 331.

[8]

Wang Y. L., Wu Y. J. Chem. Res. Chinese Universities, 2000, 16(2): 131.

[9]

Jana R., Pathak T. P., Sigman M. S. Chem. Rev., 2011, 111(3): 1417.

[10]

Rosen B. M., Quasdorf K. W., Wilson D. A., Zhang N., Resmerita A. M., Garg N. K., Percec V. Chem. Rev., 2011, 111(3): 1346.

[11]

Tucker C. E., de Vries J. G. Top. Catal., 2002, 19(1): 111.

[12]

Hu X. L. Chem. Sci., 2011, 2(10): 1867.

[13]

Lipschutz M. I., Yang X., Chatterjee R., Tilley T. D. J. Am. Chem. Soc., 2013, 135(41): 15298.

[14]

Tennyson A. G., Lynch V. M., Bielawski C. W. J. Am. Chem. Soc., 2010, 132(27): 9420.

[15]

Klein A., Budnikova Y. H. O., Sinyashin G. J. Organomet. Chem., 2007, 692(15): 3156.

[16]

Jones G. D., Martin J. L., McFarland C., Allen O. R., Hall R. E., Haley A. D., Jacob Brandon R., Konovalova T., Desrochers P. J., Pulay P., Vicic D. A. J. Am. Chem. Soc., 2006, 128(40): 13175.

[17]

Jin Z., Li Y. J., Ma Y. Q., Qiu L. L., Fang J. X. Chem. Eur. J., 2012, 18(2): 446.

[18]

Guo W. J., Wang Z. X. J. Org. Chem., 2013, 78(3): 1054.

[19]

Sun Y., Li X., Sun H. Dalton Trans., 2014, 43(25): 9410.

[20]

Daifuku S. L., Al-Afyouni M. H., Snyder B. E., Kneebone R. J. L. J. Am. Chem. Soc., 2014, 136(25): 9132.

[21]

Xu Y. C., Zhang J., Sun H. M., Shen Q., Zhang Y. Dalton Trans., 2013, 42(23): 8437.

[22]

Iglesias M. J., Prieto A., Nicasio M. C. Org. Lett., 2012, 14(17): 4318.

[23]

Monnereau L., Sémeril D., Matt D. Chem. Commun., 2011, 47(23): 6626.

[24]

Vechorkin O., Proust V., Hu X. L. J. Am. Chem. Soc., 2009, 131(28): 9756.

[25]

Ackermann L., Born R., Spatz J. H., Meyer D. Angew. Chem. Int. Ed., 2005, 44(44): 7216.

[26]

Guisán-Ceinos M., Soler-Yanes R., Collado-Sanz D., Phapale V. B., Buñuel E., Cárdenas D. J. Chem. Eur. J., 2013, 19(26): 8405.

[27]

Terao J., Watanabe H., Ikumi A., Kuniyasu H., Kambe N. J. Am. Chem. Soc., 2002, 124(16): 4222.

[28]

Sun Y., Li X., Sun H. Inorg. Chimica Acta, 2014, 415: 95.

[29]

Li G. Y. Angew. Chem. Int. Ed., 2001, 40(8): 1513.

[30]

Ren G., Cui X., Wu Y. Eur. J. Org. Chem., 2010, 2010(12): 2372.

[31]

Liu N., Wang Z. X. J. Org. Chem., 2011, 76(24): 10031.

[32]

Korn T. J., Schade M. A., Cheemala M. N., Wirth S., Guevara S. A., Cahiez G., Knochel P. Synthesis, 2006, 4: 3547.

[33]

Inamoto K., Kuroda J., Sakamoto T., Hiroya K. Synthesis, 2007, 5: 2853.

[34]

Wang Z. X., Wang L. Chem. Commun., 2007, 43(23): 2423.

[35]

Hatakeyama T., Nakamura M. J. Am. Chem. Soc., 2007, 129(32): 9844.

[36]

Lipschutz M. I., Don Tilley T. Angew. Chem. Int. Ed., 2014, 53(28): 7290.

[37]

Zheng B., Tang F., Luo J., Schultz J. W., Rath N. P., Mirica L. M. J. Am. Chem. Soc., 2014, 136(17): 6499.

[38]

Zhou Z., Xue W. J. Organomet. Chem., 2009, 694(5): 599.

[39]

Nagano T., Hayashi T. Org. Lett., 2005, 7(3): 491.

[40]

Amay T., Suzuki R., Hirao T. Chem. Eur. J., 2014, 20(3): 653.

[41]

Yuan, C., Fang, Q., RSC Adv., 2012, 2(21), 8055

[42]

Liaw D., Wang K. L., Huang Y. C., Lee K. R., Lai J. Y., Ha C. S. Prog. Polym. Sci., 2012, 37(7): 907.

[43]

Pramanik S., Hu Z., Zhang X., Zheng C., Kelly S., Li J. Chem. Eur. J., 2013, 19(47): 15964.

[44]

Falaise C., Volkringer C., Vigier J. F., Henry N., Beaurain A., Loiseau T. Chem. Eur. J., 2013, 19(17): 5324.

[45]

Gao C., Li G., Sun X. A Method for Separation and Purification of the Tetramethyl-biphenyl Mixture of Isomers, 2014.

[46]

Liu W., Lei A. Tetrahedron Lett., 2007, 49(4): 610.

[47]

Tamio H., Jiro N. Method for Producing a Biphenyl Derivative, 2009.

[48]

Mukhopadhyay S., Rothenberg G., Wiener H., Sasson Y. Tetrahedron, 1999, 55(51): 14763.

[49]

Mukhopadhyay S., Rothenberg G., Wiener H., Sasson Y. J. Chem. Soc., Perkin Trans., 1999, 2(11): 2481.

[50]

Breitenfeld J., Ruiz J., Wodrich M. D., Hu X. L. J. Am. Chem. Soc., 2013, 135(32): 12004.

[51]

Joshi-Pangu A., Wang C. Y., Biscoe M. R. J. Am. Chem. Soc., 2011, 133(22): 8478.

[52]

Punji B., Song W., Shevchenko G. A., Ackermann L. Chem. Eur. J., 2013, 19(32): 10605.

[53]

Garcia P. M. P., Franco T. D., Orsino A., Ren P., Hu X. L. Org. Lett., 2012, 14(16): 4286.

[54]

Feng Z., Chen F., Zhang X. Org. Lett., 2012, 14(7): 1938.

[55]

Kuzmina O. M., Steib A. K., Markiewicz J. T., Flubacher D., Knochel P. Angew. Chem. Int. Ed., 2013, 52(18): 4945.

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/