Crystal structures, thermal analysis and electrochemical behaviors of functionalized pyridinium ionic liquids comprising one 1-ethyl acetate group

Yamei Zhao , Hongmeng Cui , Changzheng Zheng , Xiaogang Chen , Chunyang Li

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 112 -117.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 112 -117. DOI: 10.1007/s40242-016-5252-1
Article

Crystal structures, thermal analysis and electrochemical behaviors of functionalized pyridinium ionic liquids comprising one 1-ethyl acetate group

Author information +
History +
PDF

Abstract

Pyridinium ionic liquids(ILs, 1-ethyl acetate pyridinium hexfluorophosphate[EAPy][PF6] and 1-ethyl acetate-3-methyl pyridinium hexfluorophosphate[EAMPy][PF6]), were synthesized by a two-step process involving introduction of one ethyl acetate group and anion metathesis. Colorless single crystals of the two ILs were initially obtained using the solvent-evaporation method in mixed solvents. Single-crystal X-ray diffraction was used to determine the crystal structures. [EAPy][PF6] crystallize in the monoclinic space group C2/c with a=2.2748(16) nm, b=0.6204(4) nm, c=1.8552(12) nm and Z=8, whereas [EAMPy][PF6] crystallizes in the orthorhombic space group P212121 with a=0.7126(17) nm, b=1.2792(3) nm, c=1.5327(3) nm and Z=4. The structure of [EAPy][PF6] contains double zigzag chains formed by alternately pairing large organic cations with the octahedral anions of [P1F6]–or [P2F6]. The [P1F6] and [P2F6] anions occupy respectively two distinct crystallographic sites in crystal packing models. The structure of [EAMPy][PF6] includes ladder-type chains constructed through pairing pyridinium cations with inorganic anions of [PF6]. The [PF6] anion in [EAMPy][PF6] shows a distorted octahedron structure and is sandwiched by ethyl acetate groups in crystallographic stacking. This study reveals the influence of chemical modification involving the methyl group(CH3) onto crystallographic structure of pyridinium ILs. Thermal analysis indicates that the difficult crystallization of the two ILs is related to the low void filling of ion pairs in crystal structure, leading to relatively low melting point and evident supercooling during the cooling process. Additionally, the experimental results indicate that the two ILs have electrochemical activity. The ethyl acetate group also allows downward shifting of electrochemical windows to less negative positions and the ionic conductivities of the two ILs follow an Arrhenius-type behavior.

Keywords

Pyridinium ionic liquid / Crystal structure / Thermal analysis / Electrochemical property

Cite this article

Download citation ▾
Yamei Zhao, Hongmeng Cui, Changzheng Zheng, Xiaogang Chen, Chunyang Li. Crystal structures, thermal analysis and electrochemical behaviors of functionalized pyridinium ionic liquids comprising one 1-ethyl acetate group. Chemical Research in Chinese Universities, 2016, 32(1): 112-117 DOI:10.1007/s40242-016-5252-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Reichert W. M., Holbrey J. D., Swatloski R. P. Cryst. Growth Des., 2007, 7(6): 1106.

[2]

Peilin L., Edward O. B., Hardacre C. J. Phys. Chem. C, 2015, 119: 2716.

[3]

Nguyen N. L., Rochefort D. Electrochim Acta, 2014, 147: 96.

[4]

Gao J., Ndong R. S., Mark B. Shiflett. ACS Nano, 2015, 9(3): 3243.

[5]

García-Suárez E. J., Menéndez-Vázquez C., García A. B. J. Mol. Liq., 2012, 169: 37.

[6]

Xue X. G., Zhao L., Z. Y., Qian H. J. Chem. Res. Chinese Universities, 2013, 29(2): 366.

[7]

Yang Z., Cui X. B., Jie H. M. Ind. Eng. Chem. Res., 2015, 54: 1204.

[8]

Requejo P. F., Gomez E., Calvar N. Ind. Eng. Chem. Res., 2015, 54: 1342.

[9]

Nguyen V. T., Lee J. C., Jeong J. Ind. Eng. Chem. Res., 2015, 54: 1350.

[10]

Chen M., Pendrill R., Goran W. J. Chem. Theory Comput., 2014, 10: 4465.

[11]

Aoun B., Goldbach A., Kohara S. J. Phys. Chem. B, 2010, 114: 12623.

[12]

Zhao Y. M., Hu X. L., Zhang Q. Y. Mater. Lett., 2010, 64: 794.

[13]

Tadesse H., Blake A. J., Champness N. R. Cryst. Eng. Comm., 2012, 14: 4886.

[14]

Miura Y., Shimizu F., Mochida T. Inorg. Chem., 2010, 4: 10032.

[15]

Lauw Y., Ruther T., Horne M. D. Cryst. Growth Des., 2010, 12: 2803.

[16]

Mukai T., Nishikawa K. Solid State Sci., 2010, 12: 783.

[17]

Kozlova S. A., Verevkin S. P., Heintz A. J. Chem. Eng. Data, 2009, 54: 1524.

[18]

Chen S. H., Yang F. R., Wang M. T. C. R. Chim., 2010, 13: 1391.

[19]

Berg R. W., Tiisager A., Van Buu O. N. J. Phys. Chem. B, 2010, 113: 8878.

[20]

Mahjoor P., Latrurner S. E. Cryst. Growth Des., 2009, 9(3): 1385.

[21]

Xue H., Tong Z. F., Wei F. Y. C. R. Chim., 2008, 11: 90.

[22]

Sheldrick G. M. SHELXS-97, Program for the Solution of Crystal Structures, University of Göttingen, Göttingen, 1997.

[23]

Sheldrick G. M. SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Göttingen, 1997.

[24]

Jin Y., Fang S. H., Yang L., Hirano S., Tachibana K. J. Power Sources, 2011, 196: 10658.

[25]

Özdemir M. C., Özgün B. J. Mol. Liq., 2014, 200: 129.

[26]

Richardson P. M., Voice A. M., Ward I. M. Electrochim. Acta, 2014, 130: 606.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/