Theoretical study about effects of H2O and Na+ on adsorption of CO2 on kaolinite surfaces

Dinglu Wu , Wen Jiang , Xiaoqiang Liu , Nianxiang Qiu , Ying Xue

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 118 -126.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 118 -126. DOI: 10.1007/s40242-016-5201-z
Article

Theoretical study about effects of H2O and Na+ on adsorption of CO2 on kaolinite surfaces

Author information +
History +
PDF

Abstract

The density functional theory(DFT) was used to investigate the adsorptions of carbon dioxide(CO2) on kaolinite surfaces and the influences of Na+ and H2O on the adsorption. Both cluster and periodic models of kaolinite were considered. The calculated results indicate that stable complexes can be formed between adsorbed CO2 and the surfaces of kaolinite in the presence or absence of sodium cation and water molecule. The Al―O octahedral surface has a larger adsorption affinity for CO2 than the Si―O tetrahedral surface of kaolinite because the hydroxyl groups of kaolinite Al―O surface present more activity than the basal O atoms of the Si―O tetrahedral surface in the intermolecular interactions. The existence of exchangeable sodium cations exerts the significant effect on the adsorption of CO2 with the dramatic increase of the adsorption energy, while the presence of water molecule decreases the adsorption strength insignificantly. The calculated Gibbs free energies of the adsorption reveal that the adsorptions of CO2 on all the investigated kaolinite surfaces are feasible thermodynamically in the gas phase. Surface free energy was calculated to provide the predictions of the surface stability as a function of temperature.

Keywords

Carbon capture / storage / and utilization(CCSU) / CO2 / Kaolinite / Adsorption / Density functional theory

Cite this article

Download citation ▾
Dinglu Wu, Wen Jiang, Xiaoqiang Liu, Nianxiang Qiu, Ying Xue. Theoretical study about effects of H2O and Na+ on adsorption of CO2 on kaolinite surfaces. Chemical Research in Chinese Universities, 2016, 32(1): 118-126 DOI:10.1007/s40242-016-5201-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang Z. Z., He L. N., Gao J., Liu A. H., Yu B. Energy Environ. Sci., 2012, 5: 6602.

[2]

Bachu S. Prog. Energy Combust. Sci., 2008, 34: 254.

[3]

Benson S. M., Cole D. R. Elements, 2008, 4: 325.

[4]

Holloway S. Energy Convers. Manag., 1997, 38: 193.

[5]

Xie H. P., Wang Y. F., Ju Y., Liang B., Zhu J. H., Zhang R., Xie L. Z., Liu T., Zhou X. G., Zeng H. M., Li C., Lu H. F. Chinese Sci. Bull., 2013, 58: 128.

[6]

Michael K., Golab A., Shulakova V., Ennis-King J., Allinson G., Sharma S., Aiken T. Int. J. Greenh. Gas Con., 2010, 4: 659.

[7]

Li Q., Wu Z. S., Li X. C., Ohsumi T., Koide H. J. Appl. Mech. JSCE, 2002, 5: 591.

[8]

Rutqvist J., Tsang C. F. Environ. Geol., 2002, 42: 296.

[9]

Streit J. E., Hillis R. R. Energy, 2004, 29: 1445.

[10]

Giesting P., Guggenheim S. K. v., Groos A. F., Busch A. Int. J. Greenh. Gas Con., 2012, 8: 73.

[11]

Xu T., Apps J. A., Pruess K. Chem. Geol., 2005, 217: 295.

[12]

Pearce J. M., Holloway S., Wacker H., Nelis M. K., Rochelle C., Bateman K. Energy Convers., 1996, 37: 1123.

[13]

Watson M. N., Zwingmann N., Lemon N. M. Energy, 2004, 29: 1457.

[14]

Tabrizy V. A., Hamouda A. A., Soubeyrand-Lenoir E., Denoyel R. Petrol. Sci. Technol., 2013, 31: 1532.

[15]

Anders E. Nature, 1989, 342: 255.

[16]

Brigatti M. F., Galan E., Theng B. K. G., Bergaya F., Theng B. K. G., Lagaly G. Handbook of Clay Science, Development in Clay Science, 2006, Amsterdam: Elsevier.

[17]

Newman A. C. D. Chemistry of Clays and Clay Minerals, 1987, London: Longman Scientific & Technical.

[18]

Nemecz E. Clay Minerals, 1981, Budapest: Akademiai Kiado.

[19]

Bailey S. W. Crystal Structures of Clay Minerals and Their X-Ray Indentification, 1980, London: Mineralogical Society.

[20]

Michalkova A., Robinson T. L., Leszczynski J. Phys. Chem. Chem. Phys., 2011, 13: 7862.

[21]

Michalkova A., Tunega D., Nagy L. T. J. Mol. Struct., 2002, 581: 37.

[22]

Michalkova A., Tunega D. J. Phys. Chem. C, 2007, 111: 11259.

[23]

Martorell B., Kremleva A., Kruger S., Rosch N. J. Phys. Chem. C, 2010, 114: 13287.

[24]

Castro E. A. S., Gargano R., Martins J. B. L. Int. J. Quantum Chem., 2012, 112: 2828.

[25]

Bish D. L. Clays Clay Miner., 1993, 41: 738.

[26]

Busch A., Alles S., Gensterblum Y., Prinz D., Dewhurst D. N., Raven M. D., Stanjek H., Krooss B. M. Int. J. Greenh. Gas Con., 2008, 2: 297.

[27]

Ma C., Eggleton R. A. Clays Clay Miner., 1999, 47: 174.

[28]

Wang J. B., Han B. X., Yan H. K., Li Z. X., Thomas R. K. Langmuir, 1999, 15: 8207.

[29]

Tunega D., Gerzabek M. H., Lischka H. J. Phys. Chem. B, 2004, 108: 5930.

[30]

Zhang G. Z., Al-Saidi W. A., Myshakin E. M., Jordan K. D. J. Phys. Chem. C, 2012, 116: 17134.

[31]

Zhou J. H., Lu X. C., Zhu J. X., Liu X. D., Wei J. M., Zhou Q., Yuan P., He H. P. J. Phys. Chem. C, 2012, 116: 13071.

[32]

Liu X. D., Lu X. C., Wang R. C., Meijer E. J., Zhou H. Q., He H. P. Geochim. Cosmochim. Ac., 2012, 92: 233.

[33]

Rutkai G., Kristof T. Chem. Phys. Lett., 2008, 462: 269.

[34]

Campos R. B., Wypych F., Martins H. P. Int. J. Quantum Chem., 2009, 109: 594.

[35]

El-Sayed K., Heiba Z. K., Abdel-Rahman A. M. Cryst. Res. Technol., 1990, 25: 305.

[36]

Gorb L., Lutchyn R., Zub Y., Leszczynska D., Leszczynski J. J. Mol. Struct.(Theochem.), 2006, 766: 151.

[37]

Alzate L. F., Ramos C. M., Hernandez N. M., Hernandez S. P., Mina N. Vib. Spectrosc., 2006, 42: 357.

[38]

Chatterjee A., Iwasaki T., Ebina T. J. Phys. Chem. A, 2002, 106: 641.

[39]

Scott A. M., Dawley M. M., Orlando T. M., Hill F. C., Leszczynski J. J. Phys. Chem. C, 2012, 116: 23992.

[40]

Zhao Y., Truhlar D. G. Theor. Chem. Acc., 2008, 120: 215.

[41]

Zhao Y., Schultz N. E., Truhlar D. G. J. Chem. Theory Comput., 2006, 2: 364.

[42]

Zhao Y., Truhlar D. G. Rev. Mineral. Geochem., 2010, 71: 19.

[43]

Rassolov V. A., Ratner M. A., Pople J. A., Redfern P. C., Curtiss L. A. J. Comput. Chem., 2001, 22: 976.

[44]

Parr R. G., Yang W. Density Functional Theory of Atoms and Molecules, 1989, New York: Oxford University Press.

[45]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D. F. Ö, Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, Revision A.1, 2009.

[46]

Reed A. E., Curtiss L. A., Weinhold F. Chem. Rev., 1988, 88: 899.

[47]

Glendening E. D., Weinhold F. J. Comput. Chem., 1998, 19: 593.

[48]

Delley B. J. Chem. Phys., 2000, 113: 7756.

[49]

Ceperley D. M., Alder B. J., Phys. Rev. Lett., 1980, 45: 566.

[50]

Perdew J. P., Wang Y. Phys. Rev. B, 1992, 45: 13244.

[51]

Inga C., Sainz-Diaz C. I., Ortiz E., Vivier-Bunge A. J. Mol. Model, 2014, 20: 2318.

[52]

Prigiobbe V., Negreira A. S., Wilcox J. J. Phys. Chem. C, 2013, 117: 21203.

[53]

Tunega D., Haberhauer G., Gerzabek M. H., Lischka H. Langmuir, 2002, 18: 139.

[54]

Kerisit S., Bylaska E. J., Felmy A. R. Chem. Geol., 2013, 359: 81.

[55]

Tunega D., Benco L., Haberhauer G., Gerzabek M. H., Lischka H. J. Phys. Chem. B, 2002, 106: 11515.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/