One step preparation of highly dispersed TiO2 nanoparticles

Xu Liu , Yan Chen , Shihui Jiao , Guangsheng Pang

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 688 -692.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 688 -692. DOI: 10.1007/s40242-015-5300-2
Article

One step preparation of highly dispersed TiO2 nanoparticles

Author information +
History +
PDF

Abstract

A facile approach was developed to prepare highly dispersed TiO2 nanoparticles with selected phase. The crystallization phase of the nanoparticles can be easily tuned from anatase to rutile by the dosage of hydrochloric acid in the reaction system. The crystallite size of the as-prepared anatase TiO2 nanoparticles was ca. 3.2 nm with high dispersion. A transparent TiO2 colloid was obtained by dispersing the as-prepared anatase TiO2 nanoparticles in deionized water without any organic additives added. The concentration of TiO2-H2O colloid can be as high as 1600 g/L. The optical transmittance of TiO2-H2O colloid with a low concentration was nearly 100% in the visible region. Furthermore, anatase TiO2 nanoparticles(TiO2-NPs) showed superior photocatalytic performance compared to rutile TiO2-NPs.

Keywords

TiO2 nanoparticle / Water-dispersible / Colloid

Cite this article

Download citation ▾
Xu Liu, Yan Chen, Shihui Jiao, Guangsheng Pang. One step preparation of highly dispersed TiO2 nanoparticles. Chemical Research in Chinese Universities, 2015, 31(5): 688-692 DOI:10.1007/s40242-015-5300-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Buso D., Post M., Cantalini C., Mulvaney P., Martucci A. Adv. Funct. Mater., 2008, 18(23): 3843.

[2]

Han F., Kambala V. S. R., Srinivasan M., Rajarathnam D., Naidu R. Appl. Catal. A: Gen., 2009, 359(1/2): 25.

[3]

Nikawa T., Naya S., Tada H. J. Colloid Interface Sci., 2015, 456: 161.

[4]

Yang C., Fan H., Xi Y., Chen J., Li Z. Appl. Surf. Sci., 2008, 254(9): 2685.

[5]

Feng X. J., Shankar K., Varghese O. K., Paulose M., Latempa T. J., Grimes C. A., Nano Lett., 2008, 8(11), 3781

[6]

Crepaldi E. L., Soler-Illia G. J. D. A., Grosso D., Cagnol F., Ribot F., Sanchez C. J. Am. Chem. Soc., 2003, 125(32): 9770.

[7]

Li H. X., Bian Z. F., Zhu J., Zhang D. Q., Li G. S., Huo Y. N., Li H., Lu Y. F. J. Am. Chem. Soc., 2007, 129(27): 8406.

[8]

Nishiyama N., Fujiwara Y., Adachi K., Inumaru K., Yamazaki S. Appl. Catal. B: Environ., 2015, 176: 347.

[9]

Feng X., Zhai J., Jiang L. Angew. Chem. Int. Ed., 2005, 44(32): 5115.

[10]

Li Y., Sasaki T., Shimizu Y., Koshizaki N., Small, 2008, 4(12), 2286

[11]

Lai Y., Tang Y., Gong J., Gong D., Chi L., Lin C., Chen Z. J. Mater. Chem., 2012, 22(15): 7420.

[12]

Li G. S., Li L. P., Boerio-Goates J., Woodfield B. F. J. Am. Chem. Soc., 2005, 127(24): 8659.

[13]

Bokhimi X., Morales A., Ortiz E., Lopez T., Gomez R., Navarrete J. J. Sol-Gel Sci. Techn., 2004, 29(1): 31.

[14]

Li J. G., Ishigaki T., Sun X. D. J. Phys. Chem. C, 2007, 111(13): 4969.

[15]

Li W., Ni C., Lin H., Huang C. P., Shah S. I. J. Appl. Phys., 2004, 96(11): 6663.

[16]

Cozzoli P. D., Kornowski A., Weller H. J. Am. Chem. Soc., 2003, 125(47): 14539.

[17]

Li N., Liu G., Zhen C., Li F., Zhang L. L., Cheng H. M. Adv. Funct. Mater., 2011, 21(9): 1717.

[18]

Wen P. C., Cai C., Zhong H., Hao L. Y., Xu X. J. Mater. Sci., 2015, 50(18): 5944.

[19]

Lou X. W., Archer L. A. Adv. Mater., 2008, 20(10): 1853.

[20]

Eiden-Assmann S., Widoniak J., Maret G. Chem. Mater., 2004, 16(1): 6.

[21]

Yang H. G., Liu G., Qiao S. Z., Sun C. H., Jin Y. G., Smith S. C., Zou J., Cheng H. M., Lu G. Q. J. Am. Chem. Soc., 2009, 131(11): 4078.

[22]

Li G. H., Gray K. A. Chem. Mater., 2007, 19(5): 1143.

[23]

Hu Y., Yuan C. W. J. Cryst. Growth, 2005, 274(3/4): 563.

[24]

Serrano D. P., Calleja G., Sanz R., Pizarro P. J. Mater. Chem., 2007, 17(12): 1178.

[25]

Wu N. L., Wang S. Y., Rusakova I. A., Science, 1999, 285(5432), 1375

[26]

Yoshitake H., Sugihara T., Tatsumi T. Chem. Mater., 2002, 14(3): 1023.

[27]

Alamgir Khan W., Ahmad S., Naqvi A. H. Mater. Lett., 2014, 133: 28.

[28]

Charbonneau C., Holliman P. J., Davies M. L., Watson T. M., Worsley D. A. J. Colloid Interface Sci., 2015, 442: 110.

[29]

Ohya T., Nakayama A., Ban T., Ohya Y., Takahashi Y. Chem. Mater., 2002, 14(7): 3082.

[30]

Thompson T. L., Yates J. T. Chem. Rev., 2006, 106(10): 4428.

[31]

Yan X. M., Pan D. Y., Li Z., Liu Y. Y., Zhang J. C., Xu G., Wu M. H. Mater. Lett., 2010, 64(16): 1833.

[32]

Sreethawong T., Suzuki Y., Yoshikawa S. Catal. Commun., 2005, 6(2): 119.

[33]

Spurr R. A., Myers H. Anal. Chem., 1957, 29(5): 760.

[34]

Li H., Duan X., Liu G., Jia X., Liu X. Mater. Lett., 2008, 62(24): 4035.

[35]

Zhou J., Zhao G., Song B., Han G., CrystEngComm, 2011, 13(7), 2294

[36]

Cheng H., Ma J., Zhao Z., Qi L. Chem. Mater., 1995, 7(4): 663.

[37]

Oaki Y., Anzai T., Imai H. Adv. Funct. Mater., 2010, 20(23): 4127.

[38]

Oaki Y., Nakamura K., Imai H., Chem-Eur. J., 2012, 18(10), 2825

[39]

Brus L. E. J. Chem. Phys., 1984, 80(9): 4403.

[40]

Ma Y., Wang X. L., Jia Y. S., Chen X. B., Han H. X., Li C. Chem. Rev., 2014, 114(19): 9987.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/