Effect of ionic concentration on drug release from polyelectrolyte hydrogel carriers analyzed via triphasic mechanism model

Yabo Liu , Yihan Xu , Yaru Zhao , Yuxi Jia

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 302 -310.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (2) : 302 -310. DOI: 10.1007/s40242-015-5295-8
Article

Effect of ionic concentration on drug release from polyelectrolyte hydrogel carriers analyzed via triphasic mechanism model

Author information +
History +
PDF

Abstract

In different parts of the gastrointestinal tract, the rate of drug release from polyelectrolyte hydrogel tablets is highly affected by variance of ionic concentration. This research aims at revealing clearly how the drug release from a hydrogel matrix is affected by ionic concentration of external solution through the finite element simulation and triphasic mechanism model. The coupled relationship of the motions including the polyelectrolyte hydrogel swelling, the water flow and the ion diffusion, is illustrated in the present work. In order to simulate the drug controlled release from a swollen polyelectrolyte hydrogel carrier, the mathematical model was built on the basis of the multiphasic theory of polyelectrolyte hydrogels. Finally, the reliability of the simulation method was verified qualitatively by experimental results. The results reveal that when the initial concentration of fixed anions of polymer network is higher than the concentration of free anions in the external solution, the drug release rate increases with increasing the ionic concentration of the external solution. The research is helpful for the optimal design of oral drug release in gastrointestinal tract.

Keywords

Polyelectrolyte hydrogel carrier / Triphasic mechanism model / Drug controlled release / Finite element simulation / Mathematical model

Cite this article

Download citation ▾
Yabo Liu, Yihan Xu, Yaru Zhao, Yuxi Jia. Effect of ionic concentration on drug release from polyelectrolyte hydrogel carriers analyzed via triphasic mechanism model. Chemical Research in Chinese Universities, 2016, 32(2): 302-310 DOI:10.1007/s40242-015-5295-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bodmeier R., Guo X. D., Sarabia R. E., Skultety P. F. Pharmaceut Res., 1996, 13: 52.

[2]

Lu C. G., Xu K., Li W. B., Li P. C., Tan Y., Wang P. X. Chinese J. Polym. Sci., 2013, 90: 1203.

[3]

Li Y., Yin Q., Deng M. Y., Cui J. J., Jiang B. Chinese J. Polym. Sci., 2009, 27: 335.

[4]

Han Y. A., Lee E. M., Ji B. C. Chinese J. Polym. Sci., 2009, 27: 359.

[5]

Yang L. H., Chu H., Chen M. Q., Hu N., Zhao Y. F. Chem. Res. Chinese Universities, 2011, 27(2): 334.

[6]

Guo J. S., Li J. Z., Jing X. B., Chen X. S., Huang Y. B. Chem. Res. Chinese Universities, 2011, 27(2): 329.

[7]

Mahdavinia G. R., Pourjavadi A., Hosseinzadeh H., Zohuriaan M. J. Eur. Polym. J., 2004, 40: 1399.

[8]

Kim S. J., Park S. J., Kim I. Y., Shin M. S., Kim S. I. J. Appl. Polym. Sci., 2002, 86: 2285.

[9]

Kim S. J., Shin S. R., Lee J. H., Lee S. H., Kim S. I. J. Appl. Polym. Sci., 2003, 90: 91.

[10]

Wu X. Y., Lee P. I. Pharmaceut Res., 1993, 10: 1544.

[11]

Liu Y. B., Xu Y. H., Zhu P., Jia Y. X. J. Control. Release, 2015, 213: e144.

[12]

Feng L. G., Jia Y. X., Chen X. L., Li X., An L. J. J. Chem. Phys., 2010, 133: 114904.

[13]

Sastre R. L., Blanco M. D., Gómez C., Socorro del J. M., Teijón J.M. Polym. Int., 1999, 48: 843.

[14]

Machín R., Ramón I. J., Vélaz I. Eur. Polym. J., 2013, 49: 3912.

[15]

Higuchi T. J. Pharm. Sci., 1961, 50: 874.

[16]

Ritger P., Peppas N. A. J. Control Release, 1987, 5: 37.

[17]

Peppas N. A., Sahlin J. J. Int. J. Pharm., 1989, 57: 169.

[18]

Hopfenberg H. B. Acs. Sym. Ser., 1976, 33: 26.

[19]

Karasulu H. Y., Ertan G., Köse T. Eur.J. Pharm Biopharm, 2000, 49: 177.

[20]

Kiil S., Dam-Johansen K. J. Control Release, 2003, 90: 1.

[21]

Xu Y. H., Jia Y. X., Wang Z., Wang Z. J. J. Pharm. Sci., 2013, 102: 1532.

[22]

Ninawe P. R., Parulekar S. J. Ind. Eng. Chem. Res., 2012, 51: 1741.

[23]

Feng L. G., Jia Y. X., Li X., An L. J. J. Mech. Behav. Biomed, 2011, 4: 1328.

[24]

Fujita H. Adv. Polym. Sci., 1961, 3: 1.

[25]

Zhao S. S. Biosens and Bioelectron, 2015, 64: 664.

[26]

Georgiou K. R., Nadhanan R. R. J. Cell Physiol., 2014, 230: 648.

[27]

Blanco M. D., Sandra G., Teijón C., Rosa O., Lorenzo P., Issa K., José M. T. Polym. Int., 2008, 57: 1215.

[28]

Ferrero C., Massuelle D., Jeannerat D., Doelker E. J. Control. Release., 2008, 128: 71.

[29]

Doi Y., Tokit M. Langmuir, 2005, 21: 9420.

[30]

Suzuki Y. Y., Tokita M., Mukai S. Eur. Phys. J. E., 2009, 29: 415.

[31]

Tokita M., Tanaka T. Science, 1991, 253: 1121.

[32]

De S. K., Aluru N. R., Johnson B., Crone W. C., Beebe D. J., Moore J. J. Microelectromech S., 2002, 11: 544.

[33]

Liu Y. Y., Liu W. Q., Chen W. X., Sun L., Zhang G. B. Polymer, 2007, 48: 2665.

[34]

Singh T. R. R., McCarron P. A., Woolfson A. D., Donnelly R. F. Eur. Polym. J., 2009, 45: 1239.

[35]

Tanaka T., Fillmore D. J. J. Chem. Phys., 1979, 70: 1214.

[36]

El-Sherbiny I. M., Lins R. J., Abdel-Bary E. M., Harding D. R. K. Eur. Polym. J., 2005, 41: 2584.

[37]

Zhang Z., Chen L., Zhao C. W., Bai Y. Y., Deng M. X., Shan H. L., Zhuang X. L., Chen X. S., Jing X. B. Polymer, 2011, 52: 676.

[38]

Katime I., Valderruten N., Quintana J. Polym. Int., 2001, 50: 869.

[39]

Zhang J. T., Huang S. W., Xue Y. N., Liu J., Zhuo R. X. Chinese J. Polym. Sci., 2005, 23: 513.

[40]

Yang M., Liu B. T., Gao G., Liu X. L., Liu F. Q. Chinese J. Polym. Sci., 2010, 28: 951.

[41]

Brazel C. S., Peppas N. A. Polymer, 1999, 40: 3383.

[42]

Han X. Y., Gai L. G., Jiang H. H., Zhao L. C., Liu H., Zhang W. Synthetic Met., 2013, 171: 1.

[43]

Némethy, Solti K., Kiss L., Gyarmati B., Deli M. A., Csányi E., Szilágyi A. Eur. Polym. J., 2013, 49: 2392.

[44]

He C. B., Cui F.Y., Yin L. C., Qian F., Tang C., Yin C. H. Eur. Polym. J., 2009, 45: 368.

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/