Low-temperature heat capacity and standard thermodynamic functions of D-galactose and galactitol

Ze Cheng , Bin Xue , Zhicheng Tan , Quan Shi

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 987 -991.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 987 -991. DOI: 10.1007/s40242-015-5263-3
Article

Low-temperature heat capacity and standard thermodynamic functions of D-galactose and galactitol

Author information +
History +
PDF

Abstract

The heat capacities of D-galactose and galactitol were measured on a quantum design physical property measurement system(PPMS) over a temperature range of 1.9―300 K, and the experimental data were fitted to a function of T using a series of theoretical and empirical models in appropriate temperature ranges. The fit results were used to calculate thermodynamic function values, C p,m θ, Δ0 T S m θ, and Δ0 T H m θ from 0 K to 300 K. The standard molar heat capacity, entropy and enthalpy values of D-galactose and galactitol at 298.15 K and 0.1 MPa were determined to be C p,m θ =(227.96±2.28) and (239.50±2.40) J·K−1·mol−1, S m θ = (211.22±2.11) and (230.82±2.30) J·K−1·mol−1 and H m θ = (33.95±0.34) and (36.57± 0.37) kJ/mol, respectively.

Keywords

D-Galactose / Galactitol / Low-temperature heat capacity / Physical property measurement system(PPMS) / Standard thermodynamic function

Cite this article

Download citation ▾
Ze Cheng, Bin Xue, Zhicheng Tan, Quan Shi. Low-temperature heat capacity and standard thermodynamic functions of D-galactose and galactitol. Chemical Research in Chinese Universities, 2015, 31(6): 987-991 DOI:10.1007/s40242-015-5263-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Walker-Nasir E., Kaleem A., Hoessli D. C. Curr. Org. Chem., 2008, 12: 940.

[2]

Fery P. A. Biochemistry, 1996, 35: 89.

[3]

Topic E., Arambasin S., Zadro R. Annales De Biologie Clinique, 1998, 46: 546.

[4]

Yeung H. W., NG T. B., Wong D. M. Int. J. Pept. Protein Res., 1986, 27: 208.

[5]

Feng Y., Rainyeau D., Chachaty C., Yu Z. W., Wolf C., Quinn P. J. Biophys. J., 2004, 86(4): 2008.

[6]

Wang S. R., Ru B., Lin H. Z., Sun W. X., Yu C. J., Luo Z. Y. Chem. Res. Chinese Universities, 2014, 30(5): 848.

[7]

Ficicioglu C., Hussa C., Gallagher P. R. Clin. Chem., 2010, 56: 1177.

[8]

Yager C. T., Chen J., Reynolds R. Molecular Genetics and Metabolism., 2003, 80: 283.

[9]

Banipal P. K., Banipal T. S., Ahluwalia J. C. J. Chem. Thermodyn., 2002, 34: 1825.

[10]

Banipal P. K., Banipal T. S., Lark B. S. J. Chem. Soc. Faraday Trans., 1997, 93: 81.

[11]

Tewari Y. B., Goldberg R. N. Biophys. Chem., 1991, 40: 59.

[12]

Daranas A. H., Shimizu H., Homans S. W. J. Am. Chem. Soc., 2004, 126: 11870.

[13]

Wang J. J., Zhuo K. L. J. Chem. Soc. Faraday Trans., 1998, 94: 3359.

[14]

Williams P. A. M., Etcheverry S. B., Barrio D. A. Carbohydr. Res., 2006, 341: 717.

[15]

Shi Q., Snow C. L., Boerio-Goates J., Woodfield B. F. J. Chem. Thermodyn., 2010, 42: 1107.

[16]

Shi Q., Boerio-Goates J., Woodfield B. F. J. Chem. Thermodyn., 2011, 43: 1263.

[17]

Shi Q., Zhang L. Y., Schlesinger M. E., Boerio-Goates J., Woodfield B. F. J. Chem. Thermodyn., 2013, 61: 51.

[18]

Gopal E. S. R. Specific Heats at Low Temperatures, 1966, New York: Plenum Press, 20.

[19]

Phillips N. E., Rev C. Solid State Sci., 1971, 2: 467.

[20]

Snow C. L., Shi Q., Boerio-Goates J., Woodfield B. F. J. Chem. Thermodyn., 2010, 42: 1136.

[21]

Woodfield B. F., Boerio-Goates J., Shapiro L., Putnam R. L., Na v rotsky A. J. Chem. Thermodyn., 1999, 31: 245.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/