Anion exchange membranes based on chloromethylation of fluorinated poly(arylene ether)s

Wenhai Mei , Zhen Wang

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 1056 -1061.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 1056 -1061. DOI: 10.1007/s40242-015-5236-6
Article

Anion exchange membranes based on chloromethylation of fluorinated poly(arylene ether)s

Author information +
History +
PDF

Abstract

This report details the properties of fluorine-containing anion exchange membranes(AEMs) synthesized by chloromethylation and quaternization of fluorinated poly(arylene ether)s(FPAEs) based on decafluorobiphenyl and bisphenol A. Meanwhile, we compared their properties with those of their non-fluorinated counterparts, Udel-based AEMs. The reactivity of the chloromethylation of fluorinated poly(arylene ether)s was lowered by the strong electron- withdrawing group, per-fluorinated biphenyl residue. Therefore higher temperature, more chloromethylation reagent, and longer reaction time were needed in the chloromethylation of FPAEs. Because of the hydrophobicity of fluorine, the swelling of FPAEs was depressed. In the FPAE-based AEMs, the water uptake of FPAE-1 membrane(F-1) was just 30%. There is a strong correlation between water uptake and conductivity for both Udel- and FPAE-based AEMs. Among all the membranes, the water uptake and the conductivity of FPAE-3 membrane(F-3) could reach up to 100% and 13.47 mS/cm respectively at 30 °C. The mechanical properties of FPAE-based AEMs at room temperature were worse than those of Udel-based ones because of the weak intermolecular interaction caused by the low polarizability of fluorine. However, their high temperature mechanical properties are better, which can be explained in terms of low swelling.

Keywords

Anion exchange membrane / Fluorinated poly(arylene ether) / Chloromethylation

Cite this article

Download citation ▾
Wenhai Mei, Zhen Wang. Anion exchange membranes based on chloromethylation of fluorinated poly(arylene ether)s. Chemical Research in Chinese Universities, 2015, 31(6): 1056-1061 DOI:10.1007/s40242-015-5236-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dunn B., Kamath H., Tarascon J. M. Science, 2011, 334(6058): 928.

[2]

Zhang H. W., Shen P. K. Chemical Reviews, 2012, 112(5): 2780.

[3]

Diat O., Gebel G. Nat. Mater., 2008, 7(1): 13.

[4]

Hickner M. A., Ghassemi H., Kim Y. S., Einsla B. R., McGrath J. E. Chemical Reviews, 2004, 104(10): 4587.

[5]

Miyatake K., Bae B., Watanabe M. Polymer Chemistry, 2011, 2(9): 1919.

[6]

Bae B., Miyatake K., Uchida M., Uchida H., Sakiyama Y., Okanishi T., Watanabe M. ACS Applied Materials & Interfaces, 2011, 3(7): 2786.

[7]

Shin D. W., Lee S. Y., Kang N. R., Lee K. H., Guiver M. D., Lee Y. M. Macromolecules, 2013, 46(9): 3452.

[8]

Varcoe J. R., Slade R. C. T. Fuel Cells, 2005, 5(2): 187.

[9]

Lu S. F., Pan J., Huang A. B., Zhuang L., Lu J. T. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(52): 20611.

[10]

Yanagi H., Fukuta K. ECS Transactions, 2008, 16(2): 257.

[11]

Varcoe J. R., Slade R. C. T., Yee E. L. H., Poynton S. D., Driscoll D. J., Apperley D. C. Chemistry of Materials, 2007, 19(10): 2686.

[12]

Poynton S. D., Slade R. C. T., Omasta T. J., Mustain W. E., Escudero-Cid R., Ocon P., Varcoe J. R. Journal of Materials Chemistry A, 2014, 2(14): 5124.

[13]

Slade R. C. T., Varcoe J. R. Solid State Ionics, 2005, 176(5/6): 585.

[14]

Hibbs M. R., Hickner M. A., Alam T. M., McIntyre S. K., Fujimoto C. H., Cornelius C. J. Chemistry of Materials, 2008, 20(7): 2566.

[15]

Tanaka M., Koike M., Miyatake K., Watanabe M. Macromolecules, 2010, 43(6): 2657.

[16]

Hossain M. A., Jang H., Lee S., Hong T., Jin L., Tan F., Kim D., Kim W. International Journal of Hydrogen Energy, 2015, 40(2): 1324.

[17]

Zhou J. F., Unlu M., Vega J. A., Kohl P. A. Journal of Power Sources, 2009, 190(2): 285.

[18]

Wang J. H., Li S. H., Zhang S. B. Macromolecules, 2010, 43(8): 3890.

[19]

Yan X. M., Gu S., He G. H., Wu X. M., Benziger J. Journal of Power Sources, 2014, 250: 90.

[20]

Switzer E. E., Olson T. S., Datye A. K., Atanassov P., Hibbs M. R., Fujimoto C., Cornelius C. J. Electrochimica Acta, 2010, 55(9): 3404.

[21]

Yokota N., Shimada M., Ono H., Akiyama R., Nishino E., Asazawa K., Miyake J., Watanabe M., Miyatake K. Macromolecules, 2014, 47(23): 8238.

[22]

Xu T. W., Zha F. F. Journal of Membrane Science, 2002, 199(1/2): 203.

[23]

Hibbs M. R., Fujimoto C. H., Cornelius C. J. Macromolecules, 2009, 42(21): 8316.

[24]

Yan J. L., Hickner M. A. Macromolecules, 2010, 43(5): 2349.

[25]

Mei W. H., Lu C. L., Yan J. L., Wang Z. Rsc. Advances, 2014, 4(52): 27502.

[26]

Zhang H., Zhang N., Ma W. J., Zhao C. J., Na H. Chem. Res. Chinese Universities, 2013, 29(4): 811.

[27]

Han K. F., Yang Q. T., Yu S. P., Yu J. H., Zhu H., Wang Z. M. Chem. J. Chinese Universities, 2013, 34(10): 2437.

[28]

Robertson N. J., Kostalik H. A., Clark T. J., Mutolo P. F., Abruña H. D., Coates G. W. Journal of the American Chemical Society, 2010, 132(10): 3400.

[29]

Clark T. J., Robertson N. J., Kostalik H. A., Lobkovsky E. B., Mutolo P. F., Abruna H. D., Coates G. W. Journal of the American Chemical Society, 2009, 131(36): 12888.

[30]

Wang L., Meng Y. Z., Wang S. J., Shang X. Y., Li L., Hay A. S. Macromolecules, 2004, 37(9): 3151.

[31]

Dhara M. G., Banerjee S. Progress in Polymer Science, 2010, 35(8): 1022.

[32]

Kim D. S., Robertson G. P., Kim Y. S., Guiver M. D. Macromolecules, 2009, 42(4): 957.

[33]

Sannigrahi A., Takamuku S., Jannasch P. International Journal of Hydrogen Energy, 2014, 39(28): 15718.

[34]

Gong F. X., Qi Y. H., Xue Q. X. Chem. J. Chinese Universities, 2014, 35(2): 433.

[35]

Li L., Liu B. J., Liu S. Y., Jiang Z. H. Chem. J. Chinese Universities, 2012, 33(6): 1121.

[36]

Hickner M. A., Fujimoto C. H., Cornelius C. J. Polymer, 2006, 47(11): 4238.

[37]

Fujimoto C. H., Hickner M. A., Cornelius C. J., Loy D. A. Macromolecules, 2005, 38(12): 5010.

[38]

Aljoumaa K., Qi Y. H., Ding J. F., Delaire J. A. Macromolecules, 2009, 42(23): 9275.

[39]

Ding J. F., Qi Y. H. Macromolecules, 2008, 41(3): 751.

[40]

Ding J., Du X. M., Day M., Jiang J., Callender C. L., Stupak J. Macromolecules, 2007, 40(9): 3145.

[41]

Ding J., Qi Y. H., Day M., Jiang J., Callender C. L. Macromolecular Chemistry and Physics, 2005, 206(23): 2396.

[42]

Ding J., Day M., Robertson G. P., Roovers J. Macromolecular Chemistry and Physics, 2004, 205(8): 1070.

[43]

Wright M. E., Toplikar E. G., Svejda S. A. Macromolecules, 1991, 24(21): 5879.

[44]

Slade R. C. T., Varcoe J. R. Solid State Ionics, 2005, 176(5/6): 585.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/