Facial preparation of magnetic lipase as efficient biocatalyst to resolute esters enantioselectively

Yanmei Zhang , Chunshan Quan , Baoquan Liu , Shengdi Fan

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 997 -1002.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 997 -1002. DOI: 10.1007/s40242-015-5209-9
Article

Facial preparation of magnetic lipase as efficient biocatalyst to resolute esters enantioselectively

Author information +
History +
PDF

Abstract

Magnetic lipase was prepared by a facial and cost-effective method. Lipase from Pseudomonase cepacia was covalently linked to Fe3O4 nanoparticles, which were produced by co-precipitating Fe2+and Fe3+ ions in ammonia solution and subsequent coating with 3,4-dihydroxylaldehyde. Magnetic Fe3O4 nanoparticles modified with 3,4-dihydroxylaldehyde bonded lipase efficiently(47 mg/g). The resulting magnetic-lipase is active(0.68 μmol·min–1·mg–1) and enantioselective(e.e. of the product >98%) in the hydrolysis of racemic 1-phenylethyl acetate. Furthermore, as a heterogeneous catalyst, the magnetic-lipase can be magnetically recycled, and a retained activity of 48% was obtained even after 6 cycles.

Keywords

Covalent attachment / 3,4-Dihydroxylaldehyde / Enantioselective hydrolysis / Lipases from Pseudomonase cepacia / Fe3O4 nanoparticle / Recycle

Cite this article

Download citation ▾
Yanmei Zhang, Chunshan Quan, Baoquan Liu, Shengdi Fan. Facial preparation of magnetic lipase as efficient biocatalyst to resolute esters enantioselectively. Chemical Research in Chinese Universities, 2015, 31(6): 997-1002 DOI:10.1007/s40242-015-5209-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Torres-Salas P., del Monte-Martinez A., Cutino-Avila B., Rodriguez-Colinas B., Alcalde M., Ballesteros A. O., Plou F. J. Adv. Mater., 2011, 23: 5275.

[2]

Amjad A. K., Mohammad A. A. Res. J. Biol. Sci., 2010, 5(8): 565.

[3]

Fang Y., Huang X. J., Chen P. C., Xu Z. K. Bmb. Rep., 2011, 44: 87.

[4]

Wang Z. G., Wan L. S., Liu Z. M., Huang X. J., Xu Z. K. J. Mol. Catal. B: Enzym., 2009, 56: 189.

[5]

Mendiola J. Org. Process Res. Develop., 2012, 16(7): 1312.

[6]

Kalantari M. J. Mater. Chem., 2012, 22(17): 8385.

[7]

Zhang Y. M., Zhao L. F., Li J., Zhang H. D., Zheng L. Y., Cao S. G., Li C. Biochem. Biophys. Res. Commun., 2008, 372: 650.

[8]

Zhang Y. M., Li J., Zhang H. D., Li C. Biochem. Biophys. Res. Commun., 2008, 372(4): 650.

[9]

Jin Q. R., Jia G. Q., Yang Q. H., Li C. Langmuir, 2011, 27(19): 12016.

[10]

Ramani K. Process Biochem., 2012, 47(3): 435.

[11]

Hartmann M., Jung D. J. Mater. Chem., 2010, 20(5): 844.

[12]

Hu Y., Yang Y., Tang S. S., Chu X. M., Zou B., Huang H. Chem. J. Chinese Universities, 2013, 34(5): 1195.

[13]

Gao J. H., Gu H., Xu B. Acc. Chem. Res., 2009, 42: 1097.

[14]

Liu S., Lu F., Xing R., Zhu J. J. Chem. A Euro. J., 2011, 17: 620.

[15]

Lee S. S., Riduan S. N., Erathodiyil N., Lim J., Cheong J. L., Cha J., Han Y., Ying J. Y. Chem. A Euro. J., 2012, 18: 7394.

[16]

Corgié S. C., Kahawong P., Duan X., Bowser D., Edward J. B., Walker L. P., Giannelis E. P. Adv. Funct. Mater., 2012, 22: 1940.

[17]

Dalla Vecchia E., Coisson M., Appino C., Vinai F., Sethi R. J. Nanosci. Nanotechnol., 2009, 9: 3210.

[18]

Dandavate V., Keharia H., Madamwar D. Biocatal. Biotransform., 2011, 29: 37.

[19]

Wang J., Meng G., Tao K., Feng M., Zhao X., Li Z., Xu H., Xia D., Lu J. R. PloS One, 2012, 7: e43478.

[20]

Huang S. H., Liao M. H., Chen D. H. Biotechnol. Progr., 2003, 19: 1095.

[21]

Wang X., Dou P., Zhao P., Zhao C., Ding Y., Xu P. Chem. Sus. Chem., 2009, 2: 947.

[22]

Yang Z. P., Si S. H., Zhang C. J. Biochem. Biophys. Res. Commun., 2008, 367: 169.

[23]

Saiyed Z. M., Sharma S., Godawat R., Telang S. D., Ramchand C. N. J. Biotechnol., 2007, 131: 240.

[24]

Hong J., Xu D., Gong P., Ma H., Dong L., Yao S. J. Chromatogr. B, 2007, 850: 499.

[25]

Xin B. J., Si S. F., Xing G. W. Chem. Asian J., 2010, 5: 1389.

[26]

Hu B., Pan J., Yu H. L., Liu J. W., Xu J. H. Proc. Biochem., 2009, 44: 1019.

[27]

Raita M., Arnthong J., Champreda V., Laosiripojana N. Fuel Process Technol., 2015, 134: 189.

[28]

Xun E., Wang Z., Zhao J. M., Guo J. X. J. Chem. Technol. Biotechnol., 2015, 90: 492.

[29]

Vega-Arroyo M., LeBreton P. R., Zapol P., Curtiss L. A., Rajh T. Chem. Phys., 2007, 339: 164.

[30]

Shultz M. D., Reveles J. U., Khanna S. N., Carpenter E. E. J. Am. Chem. Soc., 2007, 129: 2482.

[31]

Xu C. J., Xu K. M., Gu H. W., Zheng R. K., Liu H., Zhang X. X., Guo Z. H., Xu B. J. Am. Chem. Soc., 2004, 126: 9938.

[32]

Rajh T., Chen L. X., Lukas K., Liu T., Thurnauer M. C., Tiede D. M. J. Phys. Chem. B, 2002, 106: 10543.

[33]

Ren Y. H., Rivera J. G., He J. H., Kulkarni H., Lee D. K., Messersmith B. P. Bmc Biotechnol., 2011, 11: 1.

[34]

Chen T. R., Sun J. Appl. Chem. Indust., 2009, 38: 226.

[35]

Lee D. G., Ponvel K. M., Kim M., Hwang S., Ahn I. S., Lee C. H. J. Mol. Catal. B: Enzym., 2009, 57: 62.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/