Design and synthesis of 3-triazolo-coumarins and their applications in scavenging radicals and protecting DNA

Zhihui Liu , Yingnan Wang , Jingbo Sun , Yang Yang , Qingwen Liu , Zaiqun Liu , Zhiguang Song

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (4) : 526 -533.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (4) : 526 -533. DOI: 10.1007/s40242-015-5191-2
Article

Design and synthesis of 3-triazolo-coumarins and their applications in scavenging radicals and protecting DNA

Author information +
History +
PDF

Abstract

In this study, we synthesized a series of 3-triazolo-coumarins and evaluated their antioxidant activities respectively by two methods: trapping 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical(ABTS) and oxidation of DNA which was induced by Cu2+/glutathione(GSH), ·OH and 2,2′-azobis(2-amidinopropane hydrochloride)(AAPH). Among the nine 3-triazolo-coumarins, compounds 6c and 6f-6i were synthesized for the first time, which exhibited the capability of terminating radical propagation-chains in oxidation of DNA induced by AAPH. In this study, we found that phenethylamine moiety, hydroxyl and ortho-methoxy are the key groups to enhance the antioxidant activities of compounds.

Keywords

3-Trizolo-coumarin / Coumarin / Free radical / Oxidation / Antioxidant / DNA

Cite this article

Download citation ▾
Zhihui Liu, Yingnan Wang, Jingbo Sun, Yang Yang, Qingwen Liu, Zaiqun Liu, Zhiguang Song. Design and synthesis of 3-triazolo-coumarins and their applications in scavenging radicals and protecting DNA. Chemical Research in Chinese Universities, 2015, 31(4): 526-533 DOI:10.1007/s40242-015-5191-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mena S, Ortega A J M. Estrela, Mutat. Res., 2009, 674: 36.

[2]

Cooke M S, Evans M D, Dizdaroglu M, Lunec J. FASEB J., 2003, 17: 1195.

[3]

Sugamura K, Keaney J F Jr. Free Radic. Biol. Med., 2011, 51: 978.

[4]

Xiao C, Luo X Y, Li D J, Lu H, Liu Z Q, Song Z G, Jin Y H. Eur. J. Med. Chem., 2012, 53: 159.

[5]

Fraga C G, Oteiza P I. Free Radic. Biol. Med., 2011, 51: 813.

[6]

Liu Z Q. Chem. Rev., 2010, 110: 5675.

[7]

Belluti F, Fontana G, Bo L D, Carenini N, Giommarelli C, Zunino F. Bioorg. Med. Chem., 2010, 18: 3543.

[8]

Riveiro M E, Moglioni A, Vazquez R, Gomez N, Facorro G, Piehl L, Celis E R, Shayo C, Davio C. Bioorg. Med. Chem., 2008, 16: 2665.

[9]

Roussaki M, Kontogiorgis C A, Hadjipavlou-Litina D, Hamilakis S, Detsi A. Bioorg. Med. Chem. Lett., 2010, 20: 3889.

[10]

Neichi T, Koshihara Y, Murota S. Biochim. Biophys. Acta, 1983, 753: 130.

[11]

Fylaktakidou K C, Hadjipavlou-Litina D J, Litinas K E, Nicolaides D N. Curr. Pharm. Des., 2004, 10: 3813.

[12]

Chimenti F, Bizzarri B, Bolasco A, Secci D, Chimenti P, Granese A, Carradori S, Rivanera D, Zicari A, Scaltrito M M, Sisto F. Bioorg. Med. Chem. Lett., 2010, 20: 4922.

[13]

Kostova I. Curr. HIV Res., 2006, 4: 347.

[14]

Chilin A, Battistutta R, Bortolato A, Cozza G, Zanatta S, Poletto G, Mazzorana M, Zagotto G, Uriarte E, Guiotto A, Meggio F, Moro S. J. Med. Chem., 2008, 51: 752.

[15]

Peng S Y, Wang L, Guo H B, Sun S F, Wang J. Org. Biomol. Chem., 2012, 10: 2537.

[16]

Huang Q, Zheng M, Yang S, Kuang C X, Yua C, Yang Q. Eur. J. Med. Chem., 2011, 46: 5680.

[17]

Brik A, Muldoon J, Lin Y C. Chem. Bio. Chem., 2003, 4: 1246.

[18]

Lee L V, Mitchell M L, Huang S J, Fokin V V, Sharpless K B, Wong C. J. Am. Chem. Soc., 2003, 125: 9588.

[19]

Soto-Ortega D D, Murphy B P, Gonzalez-Velasquez F J, Wilson K A, Xie F, Wang Q, Moss M A. Bioorg. Med. Chem., 2011, 192: 596.

[20]

Gao C H, Shi X Y, Hou X T, Meng Q F, Zhang Y J, Teng L R. Chem. Res. Chinese Universities, 2008, 24(4): 487.

[21]

Zhang P, Omaye S T. Food Chem. Toxicol., 2001, 39: 239.

[22]

Reed C J, Douglas K T. Biochem. J., 1991, 275: 601.

[23]

Zhu B Z, Kitrossky N, Chevion M. Biochem. Biophys. Res. Commun., 2000, 270: 942.

[24]

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Free Radical Biol. Med., 1999, 26: 1231.

[25]

Kolb H C, Finn M G, Sharpless K B. Angew. Chem. Int. Ed., 2001, 40: 2004.

[26]

Kudale A A, Kendall J, Warford C C, Wilkins N D, Bodwell G J. Tetrahedron Letters, 2007, 48: 5077.

[27]

Vsevolod V, Rostovtsev L G, Green V V F, Sharpless K B. Angew. Chem. Int. Ed., 2002, 41: 2596.

[28]

Wei J C, Guo-Wang P Y, Cui L G, Zhang H B, Dai Y F, Liu T X. Chem. Res. Chinese Universities, 2014, 30(6): 1063.

[29]

Chen K L, Zhao Y H, Yuan X Y. Chem. Res. Chinese Universities, 2014, 30(2): 339.

[30]

Zennaro L, Rossetto M, Vanzani P, Marco V D, Scarpa M, Battistin L, Rigo A. Arch. Biochem. Biophys., 2007, 462: 38.

[31]

Li Y F, Liu Z Q, Luo X Y. J. Agric. Food Chem., 2010, 58: 4126.

[32]

Li G X, Liu Z Q. J. Agric. Food Chem., 2009, 57: 3943.

[33]

Jain A, Alvi N K, Parish J H, Hadi S M. Mutat. Res., 1996, 357: 83.

[34]

Janicek M F, Haseltine W A, Henner W D. Nucleic Acids Res., 1985, 13: 9011.

[35]

Halliwell B. Trends Pharmacol. Sci., 2011, 32: 125.

[36]

Munoz-Munoz J L, Garcia-Molina F, Varon R, Tudela J, García-Cánovas F, Rodriguez-Lopez J N. J. Agric. Food Chem., 2010, 58: 2062.

[37]

Yim S K, Yun S J, Yun C H. J. Biochem. Mol. Biol., 2004, 37: 629.

[38]

Wang R, Liu Z Q. J. Org. Chem., 2012, 77: 3952.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/