Graphene supported platinum nanoparticles as catalyst for oxygen reduction reaction

Wenyu Zhang , Zhixin Wang , Yan Shen , Muyao Xi , Xuebin Chu , Chunyu Xi

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 1007 -1011.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 1007 -1011. DOI: 10.1007/s40242-015-5171-6
Article

Graphene supported platinum nanoparticles as catalyst for oxygen reduction reaction

Author information +
History +
PDF

Abstract

Graphene supported Pt nanoparticles were fabricated via electrochemical reduction method and the application of them in oxygen reduction reaction was also investigated. The results of field emission scanning electron microscope(SEM), X-ray photoelectron spectroscopy(XPS) and Raman spectroscopy reveal that the interaction between Pt nanoparticles and graphene sheets can prevent graphene from agglomeration and improve the electronic conductivity of the composite. And the graphene supported Pt nanoparticles exhibit excellent electrocatalytic activity toward oxygen reduction reaction.

Keywords

Graphene / Pt nanoparticle / Electrodeposition / Oxygen reduction / Electrocatalyst

Cite this article

Download citation ▾
Wenyu Zhang, Zhixin Wang, Yan Shen, Muyao Xi, Xuebin Chu, Chunyu Xi. Graphene supported platinum nanoparticles as catalyst for oxygen reduction reaction. Chemical Research in Chinese Universities, 2015, 31(6): 1007-1011 DOI:10.1007/s40242-015-5171-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhou M., Zhang A., Dai Z., Feng Y., Zhang C. J. Phys. Chem. C, 2010, 114(39): 16541.

[2]

Guo H., Guo S. J., Fang Y. X., Dong S. J. ACS Nano, 2009, 3(9): 2653.

[3]

Zhang S., Shao Y., Liao H., Engelhard M. H., Yin G., Lin Y. ACS Nano, 2011, 5(3): 1785.

[4]

Seger B., Kamat P. V. J. Phys. Chem. C, 2009, 113(19): 7990.

[5]

Wen Z., Li J., J. Mater. Chem., 2009, (19), 8707

[6]

Rao C. N. R., Sood A. K., Subrahmanyam K. S., Govindaraj A. Angew. Chem. Int. Ed., 2009, 48(42): 7752.

[7]

Wang H. J., Cheng N. N., Yang X. Y., Li X. M., Zhu L. D. Chem. Res. Chinese Universities, 2013, 29(1): 132.

[8]

Guo S., Wen D., Zhai Y., Dong S., Wang E. ACS Nano, 2010, 4(7): 3959.

[9]

Myung S., Solanki A., Kim C., Park J., Kim K. S., Lee K. Adv. Mater., 2011, 23: 2221.

[10]

Yoo E., Okata T., Okita T., Kohyama M., Nakamura J., Honma I. Nano Lett., 2009, 9(6): 2255.

[11]

Guo S., Sun S. J. Am. Chem. Soc., 2012, 134(5): 2492.

[12]

Zang J., Wang Y., Bian L., Zhang J., Meng F., Zhao Y., Lu R., Qu X., Ren S. Carbon, 2012, 50(8): 3032.

[13]

Kamat P. V. J. Phys. Chem. Lett., 2011, 2(3): 242.

[14]

Liu C., Wang K., Luo S., Tang Y., Chen L. Small, 2011, 7(9): 1203.

[15]

Kundu P., Nethravathi C., Deshpande P. A., Rajzmathi M., Madras G., Ravishankar N. Chem. Mater., 2011, 23(11): 2772.

[16]

Shang L., Bian T., Zhan B. H., Zhang D. H., Wu L. Z., Tung C. H., Yin Y. D., Zhang T. R. Angew. Chem. Int. Ed., 2014, 53(1): 250.

[17]

Qin W., Li X. J. Phys. Chem. C, 2010, 114(44): 19009.

[18]

Gierz I., Riedl C., Starke U., Ast R. C., Kern K. Nano Lett., 2008, 8(12): 4603.

[19]

Guardia L., Villar-Rodil S., Paredes J. L., Rozada R., Alonso A. M., Tascon J. M. D. Carbon, 2012, 50(3): 1014.

[20]

Sharma S., Ganguly A., Papakonstanti-nou P., Miao X., Li M., Hutchison J. L., Delichatsios M., Ukleja S. J. Phys. Chem. C, 2010, 114(45): 19459.

[21]

Li Y., Li Y., Zhu E., McLouth T., Chiu C., Huang X., Huang Y. J. Am. Chem. Soc., 2012, 134(30): 12326.

[22]

Yumura T., Awano T., Kobayashi H., Yamabe T. Molecules, 2012, 17: 7941.

[23]

Moldovan M. S., Bulou H., Dappe Y. J., Janowska I., Begin D., Pham-Huu C., Ersen O. J. Phys. Chem. C, 2012, 116(16): 9274.

[24]

Sun K. G., Chung J. S., Hur S. H. Nanoscale Research Letter, 2015, 10: 257.

[25]

Hummers W. S., Offeman R. E. J. Am. Chem. Soc., 1958, 80(16): 1339.

[26]

Eda G., Fanchini G., Chhowalla M. Nat. Nanotechnol., 2008, 3: 270.

[27]

Cote L. J., Kim F., Huang J. J. Am. Chem. Soc., 2008, 131(3): 1043.

[28]

Zhou Y. G., Chen J. J., Wang F. B., Sheng Z. H., Xia X. H. Chem. Commun., 2010, 46(32): 5951.

[29]

Xu Y., Bai H., Lu G., Li C., Shi G. J. Am. Chem. Soc., 2008, 130(18): 5856.

[30]

Gupta A., Chen G., Joshi P., Tadigadapa S. P. Nano Lett., 2006, 6(12): 2667.

[31]

Guo H., Wang X., Qian Q., Wang F., Xia X. ACS Nano, 2009, 3(9): 2653.

[32]

Guo S., Dong S., Wang E. ACS Nano, 2009, 4(1): 547.

[33]

Stankovich S., Dikin D. A., Piner R. D., Kohlhaas K. A., Kleinhammes A., Jia Y., Wu Y., Nguyen S. T., Ruoff R. S. Carbon, 2007, 45(7): 1558.

[34]

Qu L., Liu Y., Baek J., Dai L. ACS Nano, 2010, 4(3): 1321.

[35]

Yu D., Zhang Q., Dai L. J. Am. Chem. Soc., 2010, 132(43): 15127.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/