Redox-active ferrocene-dithiolenes hybrid complexes showing switchable nonlinear optical properties

Hailing Yu , Bo Hong , Hongyan Zhao

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 792 -796.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 792 -796. DOI: 10.1007/s40242-015-5168-1
Article

Redox-active ferrocene-dithiolenes hybrid complexes showing switchable nonlinear optical properties

Author information +
History +
PDF

Abstract

Density functional theory(DFT) calculations were carried out to investigate the geometry structures, redox properties and second-order nonlinear optical(NLO) properties of ferrocene(Fc)-dithiolenes hybrid complexes. The switchable second-order NLO properties of these complexes are induced by the redox process. The oxidized process significantly affects the geometrical structures of the dithiolene moieties, that is, the embowed dithiolene moieties change into planar structures. It supports that the dithiolene moieties are the oxidized center. The β tot values of the cationic species are at least 4 and 10 times those of their corresponding parent complexes, respectively. Further, the time-dependent DFT calculation illustrates that the low-energy absorption(which is helpful for the large NLO response) is mainly assigned to intra-ligand charge transfer [π(ex-dithiolene)→π*(ex-dithiolene)]. These results suggest the potential use of the novel Fc-based dithiolenes complexes as versatile and fascinating NLO switching materials.

Keywords

Dithiolene / Redox / Nonlinear optical / Molecular switching / Density functional theory

Cite this article

Download citation ▾
Hailing Yu, Bo Hong, Hongyan Zhao. Redox-active ferrocene-dithiolenes hybrid complexes showing switchable nonlinear optical properties. Chemical Research in Chinese Universities, 2015, 31(5): 792-796 DOI:10.1007/s40242-015-5168-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Asselberghs I., Zhao Y., Cays K., Persoons A., Comito A., Rubin Y. Chem. Phys. Lett., 2002, 364: 279.

[2]

Kumar D., Derat E., Khenkin A. M., Neumann R., Shaik S. J. Am. Chem. Soc., 2005, 127: 17712.

[3]

Di Bella S., Dragonetti C., Pizzotti M., Roberto M., Tessore F., Ugo R. Top. Organomet. Chem., 2010, 28: 1.

[4]

Wu K. C., Li J., Lin C. S. Chem. Phys. Lett., 2004, 388: 353.

[5]

Zanello P., Fedi S., de Biani F. F., Giorgi G., Amaya T., Sakane H. Dalton Trans., 2009, 14: 9192.

[6]

Wang W. Y., Ma N. N., Sun S. L., Qiu Y. Q. Organometallics, 2014, 33: 3341.

[7]

Coe B. J., Avramopoulos A., Papadopoulos M. G., Pierloot K., Vancoillie S., Reis H. Chem. Eur. J., 2013, 19: 15955.

[8]

Coe B. J. Acc. Chem. Res., 2006, 39: 383.

[9]

Green K. A., Cifuentes M. P., Samoc M., Humphrey M. G. Coord. Chem. Rev., 2011, 255: 2530.

[10]

Irie M., Fukaminato T., Matsuda K., Kobatake S. Chem. Res., 2014, 114: 12174.

[11]

Yu H. L., Hong B., Luo Y. Q., Zhao H. Y. Can. J. Chem., 2015, 93: 1.

[12]

Ma N. N., Li S. J., Yan L. K., Qiu Y. Q., Su Z. M. Dalton Trans., 2014, 43: 5069.

[13]

Soras G., Psaroudakis N., Manos M. J., Liakos D. G., Mousdis G. A. Polyhedron, 2013, 62: 208.

[14]

Pilia L., Pizzotti M., Tessore F., Robertson N. Inorg. Chem., 2014, 53: 4517.

[15]

Kusamoto T., Takada K., Sakamoto R., Kume S., Nishihara H. Inorg. Chem., 2012, 51: 12102.

[16]

Liu C. G., Gao M. L., Wu Z. J. RSC Adv., 2014, 4: 38300.

[17]

Kusamoto T., Nishihara H., Kato R. Inorg. Chem., 2013, 52: 13809.

[18]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas, Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, Revision A.02, 2009, Wallingford CT: Gaussian Inc..

[19]

Limacher P. A., Mikkelsen K. V., Lüthi H. P. J. Chem. Phys., 2009, 130: 19411.

[20]

Wang W. Y., Ma N. N., Sun S. L., Qiu Y. Q. Phys. Chem. Chem. hys., 2014, 16: 4900.

[21]

Stratmann R. E., Scuseria G. E., Frisch M. J. Chem. Phys., 1998, 109: 8218.

[22]

Wang L., Wang W. Y., Qiu Y. Q. J. Mol. Graph. Model., 2015, 55: 33.

[23]

Kelly C. P., Cramer C. J., Truhlar D. G. J. Phys. Chem. B, 2007, 111: 408.

[24]

Oudar J. L., Chemla D. S. J. Chem. Phys., 1977, 66: 2664.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/