Azomethine-H as a highly selective fluorescent probe for Fe3+ detection in 100% aqueous solution and its application in living cell imaging

Fang Yu , Liyuan Qin , Zhuobin Shang , Zhenming Dong , Yu Wang , Weijun Jin

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 919 -924.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 919 -924. DOI: 10.1007/s40242-015-5163-6
Article

Azomethine-H as a highly selective fluorescent probe for Fe3+ detection in 100% aqueous solution and its application in living cell imaging

Author information +
History +
PDF

Abstract

A simple assay for the detection of Fe3+ in water by means of fluorescence spectroscopy was developed based on a commercially available reagent, Azomethine-H(A-H), allowing sensing trace levels of Fe3+ with high selectivity over other cations. A significant fluorescence quenching of A-H at 424 nm was found after its binding with Fe3+ in 100% aqueous solution at pH=7.0, while other physiologically relevant metal ions posed little interference. The fluorescence responses can be well described by the modified Stern-Volmer equation. A good linear relationship(R 2=0.9904) was observed up to 1.6×10–5 mol/L Fe3+ ions. The detection limit, calculated via the 3σ IUPAC(international union of pure and applied chemistry) criteria, was 1.95×10–7 mol/L. Moreover, the colorimetric and fluorescent response of A-H to Fe3+ can be conveniently detected by the naked eye, providing a facile method for visual detection of Fe3+. The proposed method was used to determine Fe3+ in water samples. Moreover, inverted fluorescence microscopy imaging using human umbilical vein endothelial cells shows that A-H can be used as an effective fluorescent probe for detecting Fe3+ in living cells.

Keywords

Azomethine-H / Fe3+ / Fluorescence probe / Detection / Cell imaging

Cite this article

Download citation ▾
Fang Yu, Liyuan Qin, Zhuobin Shang, Zhenming Dong, Yu Wang, Weijun Jin. Azomethine-H as a highly selective fluorescent probe for Fe3+ detection in 100% aqueous solution and its application in living cell imaging. Chemical Research in Chinese Universities, 2015, 31(6): 919-924 DOI:10.1007/s40242-015-5163-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lauffer R. B. Iron and Human Disease, 1992, Boca Raton: CRC Press, 2.

[2]

Braun V., Killmann H. Trends Biochem. Sci., 1999, 24: 104.

[3]

Yao J. N., Dou W., Qin W. W., Liu W. S. Inorg. Chem. Commun., 2009, 12: 116.

[4]

Singh N., Kaur N., Dunn J., MacKay M., Callan J. F. Tetrahedron Lett., 2009, 50: 953.

[5]

Lee D. Y., Singh N., Jang D. O. Tetrahedron Lett., 2011, 52: 1368.

[6]

Dwivedi A. K., Saikia G., Iyer P. K. J. Mater. Chem., 2011, 21: 2502.

[7]

Wang R., Yu F. B., Liu P., Chen L. X. Chem. Commun., 2012, 48: 5310.

[8]

Sen S., Sarkar S., Chattopadhyay B., Moirangthem A., Basu A., Dhara K., Chattopadhyay P. Analyst, 2012, 137: 3335.

[9]

Qu X. Y., Liu Q., Ji X. N., Chen H. C., Zhou Z. K., Shen Z. Chem. Commun., 2012, 48: 4600.

[10]

Sahoo S. K., Sharma D., Bera R. K., Crisponi G., Callan J. F. Chem. Soc. Rev., 2012, 41: 7195.

[11]

Bhalla V., Gupta A., Kumar M. Dalton Trans., 2013, 42: 4464.

[12]

Huang H. W., Liu F., Chen S. N., Zhao Q., Liao B., Long Y. F., Zeng Y. L., Xia X. D. Biosens. Bioelectron, 2013, 42: 539.

[13]

Fegade U., Attarde S., Kuwar A. Chem. Phys. Lett., 2013, 584: 165.

[14]

Meng X. L., Zhang X., Yao J. S., Zhang J. J., Ding B.Y. Sens. Actuators B, 2013, 176: 488.

[15]

Yang C. X., Ren H. B., Yan X. P. Anal. Chem., 2013, 85: 7441.

[16]

Cheng P. F., Xu K. X., Yao W. Y., Kong H. J., Kou L., Ma X. D., Wang C. J. Chem. Res. Chinese Universities, 2013, 29(4): 642.

[17]

Zhang Y. Q., Wang G., Zhang J. P. Sens. Actuators B, 2014, 200: 259.

[18]

Sivaraman G., Sathiyaraja V., Chellappa D. J. Lumin., 2014, 145: 480.

[19]

Kagit R., Yildirim M., Ozay O., Yesilot S., Ozay H. Inorg. Chem., 2014, 53: 2144.

[20]

Ye J. H., Liu J., Wang Z. H., Bai Y., Zhang W. C., He W. J. Tetrahedron Lett., 2014, 55: 3688.

[21]

Mu X. Y., Qi L., Qiao J., Ma H. M. Anal. Methods, 2014, 6: 6445.

[22]

Wang R. P., Wan Q. H., Feng F., Bai Y. F. Chem. Res. Chinese Universities, 2014, 30(4): 560.

[23]

Chereddy N. R., Raju M. V. N., Nagaraju P., Krishnaswamy V. R., Korrapati P. S., Bangal P. R., Rao V. J. Analyst, 2014, 139: 6352.

[24]

Nie X. M., Xu Y., Guo W. H., Zhou B. J., Zhang L. Y., Liao H., Pang T. Sens. Actuators B, 2015, 208: 54.

[25]

Zhou X., Wu X., Yoon J. Chem. Commun., 2015, 51: 111.

[26]

Abergel R. J., Raymond K. N. Inorg. Chem., 2006, 45: 3622.

[27]

Bergeron R. J., Huang G. F., Smith R. E., Bharti N., McManis J. S., Butler A. Tetrahedron, 2003, 59: 2007.

[28]

Marenco M. J. C., Fowley C., Hyland B. W., Galindo-Riaño D., Sahoo S. K., Callan J. F. J. Fluoresc., 2012, 22: 795.

[29]

Wei T. B., Zhang P., Shi B. B., Chen P., Lin Q., Liu J., Zhang Y. M. Dyes Pigment, 2013, 97: 297.

[30]

Díaz A. N., Sánchez F. G., Pareja A. G. Colloid Surface A, 1998, 142: 27.

[31]

Lakowicz J. R. Principles of Fluorescence Spectroscopy, 2006, New York: Springer, 205.

[32]

Nudelman R., Ardon O., Hadar Y., Chen Y., Libman J., Shanzer A. J. Med. Chem., 1998, 41: 1671.

[33]

Mashraqui S. H., Chandiramani M., Betkar R., Poonia K. Tetrahedron Lett., 2010, 51: 1306.

[34]

Bhardwaj V. K., Pannu A. P. S., Singh N., Hundal M. S., Hundal G. Tetrahedron, 2008, 64: 5384.

[35]

Pascu S. I., Balazs G., Green J. C., Green M. L. H., Vei I. C., Warren J. E., Windsor C. Inorg. Chim. Acta, 2010, 363: 1157.

[36]

Wei D. B., Sun Y. L., Yin J. X., Wei G. H., Du Y. G. Sens. Actuators B, 2011, 160: 1316.

[37]

Barra M., Bohne C., Scaiano J. C. J. Am. Chem. Soc., 1990, 112: 8075.

[38]

Chung P. K., Liu S. R., Wang H. F., Wu S. P. J. Fluoresc., 2013, 23: 1139.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/