Effect of epoxy resin on the thermal, mechanical and rheological properties of polybutylene terephthalate/glycidyl methacrylate functionalized methyl methacrylate-butadiene blend

Yanping Hao , Junjia Bian , Huili Yang , Huiliang Zhang , Ge Gao , Lisong Dong

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 140 -148.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (1) : 140 -148. DOI: 10.1007/s40242-015-5161-8
Article

Effect of epoxy resin on the thermal, mechanical and rheological properties of polybutylene terephthalate/glycidyl methacrylate functionalized methyl methacrylate-butadiene blend

Author information +
History +
PDF

Abstract

Epoxy resin was used to modify polybutylene terephthalate(PBT) and glycidyl methacrylate functionalized methyl methacrylate-butadiene(MB-g-GMA) blend. Results show that MB-g-GMA dispersed in PBT matrix uniformly and PBT/MB-g-GMA/epoxy blends reveal good compatibility. However, the added epoxy resin restricted the mobility of PBT macromolecular chains during the growth process of the crystal, which reduced the final crystallinity of PBT. The PBT/MB-g-GMA blend containing 1%(mass fraction) epoxy resin exhibited good mechanical properties. For example, the notched impact strength of the PBT/MB-g-GMA blend with 1%(mass fraction) epoxy resin was about 2 times that of PBT/MB-g-GMA blend. Sanning electron microscope(SEM) results show that the shear yielding of the PBT matrix and the cavitations of rubber particles were the major toughening mechanisms. The chemical reaction between PBT and epoxy resin induced the high complex viscosity and storage modulus of PBT/MB-g-GMA blend.

Keywords

Blend / Epoxy resin / Thermal property / Mechanical property / Rheological property / Toughening mechanism

Cite this article

Download citation ▾
Yanping Hao, Junjia Bian, Huili Yang, Huiliang Zhang, Ge Gao, Lisong Dong. Effect of epoxy resin on the thermal, mechanical and rheological properties of polybutylene terephthalate/glycidyl methacrylate functionalized methyl methacrylate-butadiene blend. Chemical Research in Chinese Universities, 2016, 32(1): 140-148 DOI:10.1007/s40242-015-5161-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun S. L., Tan Z. Y., Zhou C., Zhang M. Y., Zhang H. X. Polym. Compos., 2007, 28(4): 484.

[2]

Yu Z., Yan C., Dasari A., Dai S., Mai Y., Yang M. Macromol. Mater. Eng., 2004, 289(8): 763.

[3]

Jun J. B., Park J. G., Kim D. H., Suh K. D. Eur. Polym. J., 2001, 37(3): 597.

[4]

Arostegui A., Gaztelumendi M., Nazabal J. Polymer, 2001, 42(23): 9565.

[5]

Sun S. L., Tan Z. Y., Zhang M. Y., Yang H. D., Zhang H. X. Polym. Int., 2006, 55(8): 834.

[6]

Yu Z. Z., Yang M. S., Dai S. C., Mai Y. W. J. Appl. Polym. Sci., 2004, 93(3): 1462.

[7]

Larocca N. M., Hage E., Pessan L. A. Polymer, 2004, 45(15): 5265.

[8]

Fu Y., Song H. H., Zhou C., Sun S. L., Zhang H. X. Polym. Compos., 2013, 34(1): 15.

[9]

Brady A. J., Keskkula H., Paul D. R. Polymer, 1994, 35(17): 3665.

[10]

Xu X. Y. Chinese J. Polym. Sci., 2015, 33(2): 291.

[11]

Holstimiettinen R. M., Heino M. T., Seppala J. V. J. Appl. Polym. Sci., 1995, 57(5): 573.

[12]

Cecere A., Greco R., Ragosta G., Carinzi G. Polymer, 1990, 31(7): 1239.

[13]

Kim S. J., Shin B. S., Hong J. L., Cho W. J., Ha C. S. Polymer, 2001, 42(9): 4073.

[14]

Kim S. J., Kang C. J., Chowdhury S. R., Cho W. J., Ha C. S. J. Appl. Polym. Sci., 2003, 89(5): 1305.

[15]

Lee P. C., Kuo W. F., Chang F. C. Polymer, 1994, 35(26): 5641.

[16]

Utracki L. A. Polym. Eng. Sci., 1995, 35(1): 2.

[17]

Benson C. M., Burford R. P. J. Mater. Sci., 1995, 30(3): 573.

[18]

Hage E., Hale W., Keskkula H., Paul D. R. Polymer, 1997, 38(13): 3237.

[19]

Basu D., Banerjee A. J. Appl. Polym. Sci., 1997, 64(8): 1485.

[20]

Hage E., Ferreira L. A. S., Manrich S., Pessan L. A. J. Appl. Polym. Sci., 1999, 71(3): 423.

[21]

Mantovani G. L., Canto L. B., Hage E., Pessan L. A. Macromo. Symp., 2001, 176: 167.

[22]

Sun S. L., Xu X. Y., Yang H. D., Zhang H. X. Polymer, 2005, 46(18): 7632.

[23]

Hale W., Keskkula H., Paul D. R. Polymer, 1999, 40(2): 365.

[24]

Hale W., Keskkula H., Paul D. R. Polymer, 1999, 40(13): 3665.

[25]

Hale W., Pessan L. A., Keskkula H., Paul D. R. Polymer, 1999, 40(15): 4237.

[26]

Hale W., Lee J. H., Keskkula H., Paul D. R. Polymer, 1999, 40(13): 3621.

[27]

Hale W., Keskkula H., Paul D. R. Polymer, 1999, 40(12): 3353.

[28]

Sun S. L., Zhang M. Y., Zhang H. X., Zhang X. M. J. Appl. Polym. Sci., 2011, 122(5): 2992.

[29]

Xanthos M., Young M. W., Karayannides G. P., Bikiaris D. N. Polym. Eng. Sci., 2001, 41(4): 643.

[30]

Xanthos M., Wan C., Dhavalikar R., Karayannidis G. P., Bikiaris D. N. Polym. Int., 2004, 53(8): 1161.

[31]

Chiou K. C., Chang F. C. J. Polym. Sci. Polym. Phys., 2000, 38(1): 23.

[32]

Sun S. L., Zhang F. F., Fu Y., Zhou C., Zhang H. X. J. Macromol. Sci. Part B: Phys., 2013, 52(6): 861.

[33]

Sun S. L., Chen Z. C., Tan Z. Y., Zhou C., Zhang M. Y., Zhang H. X. e-Polymers, 2007, 142: 1.

[34]

Illers K. H. Colloid. Polym. Sci., 1980, 258(2): 117.

[35]

Larson R. G. The Structure and Rheology of Complex Fluids, 1999, New York: Oxford University Press, 13.

[36]

Memon N. A. J. Polym. Sci. Polym. Phys., 1998, 36(7): 1095.

[37]

Bousmina M., Muller R. J. Rheol., 1993, 37(4): 663.

[38]

Zhang H. L., Sun S. L., Ren M. Q., Chen Q. Y., Song J. B., Zhang H. F., Mo Z. S. J. Appl. Polym. Sci., 2008, 109(6): 4082.

[39]

Utracki L. A. Polym. Eng. Sci., 1988, 28(21): 1401.

[40]

An J., Ge J. Y., Liu Y. X. J. Appl. Polym. Sci., 1996, 60(11): 1803.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/