Pyrrol-2-yl-methanone modified silica as electron acceptor for the oxidation of water catalyzed by cobalt(II) complexes

Yi Wu , Li Wang , Qiuyun Chen

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 797 -800.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 797 -800. DOI: 10.1007/s40242-015-5156-5
Article

Pyrrol-2-yl-methanone modified silica as electron acceptor for the oxidation of water catalyzed by cobalt(II) complexes

Author information +
History +
PDF

Abstract

To develop a new type of non-oxidant electron acceptors for water oxidation, 3-(methyl)phenyl-(3,5-dimethyl-1H-pyrrol-2-yl)methanone modified silica(SiO2@py) was synthesized and used as host to Co4O4 cubane forming nanoparticles(SiO2@pyCo4). In the presence of Ru(bpy)3 2+ and under the irradiation of white LED(light emitting diode) light(10 W), SiO2@pyCo4 can catalyze water oxidation without extra electron acceptor(e.g., Na2S2O8). Moreover, the turnover frequency(TOF) value of SiO2@pyCo4 is larger than that of Co4O4 cubane under the same conditions, and the longer lasting time of SiO2@pyCo4 indicates that SiO2@py can enhance the stability of Co4O4 in water. Our results provide an economic route to develop dioxygen evolution systems based on the assembly of organic electron acceptor modified silica with active cobalt complexes.

Keywords

Silica / Water oxidation / Electron acceptor

Cite this article

Download citation ▾
Yi Wu, Li Wang, Qiuyun Chen. Pyrrol-2-yl-methanone modified silica as electron acceptor for the oxidation of water catalyzed by cobalt(II) complexes. Chemical Research in Chinese Universities, 2015, 31(5): 797-800 DOI:10.1007/s40242-015-5156-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gagliardi C J, Vannucci A K, Concepcion J J, Chen Z, Meyer T J. Energy Environ. Sci., 2012, 5: 7704.

[2]

Thoi V S, Sun Y J, Long J R, Chang C J. Chem. Soc. Rev., 2013, 42: 2388.

[3]

Li A Q, Chen Y J, Hu X Y, Zhuo K L. Chem. J. Chinese Universities, 2015, 36(1): 165.

[4]

Chen Z F, Concepcion J J, Luo H L, Hull J F, Paul A. J. Am. Chem. Soc., 2010, 132: 17670.

[5]

Kanan M W, Nocera D G. Science, 2008, 321: 1072.

[6]

Wasylenko D J, Ganesamoorthy C, Borau-Garcia J, Berlinguette C P. Chem. Commun., 2011, 47: 4249.

[7]

Nakazono T, Parent A R, Sakai K. Chem. Commun., 2013, 49: 6325.

[8]

Pizzolato E, Natali M, Posocco B, López A M, Bazzan I, Valentin M D, Galloni P, Conte V, Bonchio M, Scandola F, Sartorel A. Chem. Commun., 2013, 49: 9941.

[9]

Tanaka S, Annaka M, Sakai K. Chem. Commun., 2012, 48: 1653.

[10]

Dismukes G C, Brimblecombe R, Felton G A N, Pryadun R S, Sheats J E, Spiccia L, Swiegers G F. Acc. Chem. Res., 2009, 42: 1935.

[11]

Tsui E Y, Tran R, Yano J, Agapie T. Nature Chem., 2013, 5: 293.

[12]

Kim J H, Lee M, Park C B. Angew. Chem. Int. Ed., 2014, 53: 6364.

[13]

Kärkäs M D, Åkermark T, Johnston E V, Karim S R, Laine T M, Lee B L, kermark T, Privalov T, Kermarket B. Angew. Chem. Int. Ed., 2012, 51: 11589.

[14]

Bang S H, Lee Y M, Hong S W, Cho K B, Nishida Y, Seo M S, Sarangi R, Fukuzumi S, Nam W W. Nature Chem., 2014, 6: 934.

[15]

Wang H N, Rong X, Huang W Q, Han L, Wang T, Chen R Y. Chem. J. Chinese Universities, 2014, 35(12): 2516.

[16]

Chen L, Jiang S, Wang R W, Zhang Z T, Qiu S L. Chem. Res. Chinese Universities, 2014, 30(6): 894.

[17]

Chakrabarty R, Bora S J, Das B K. Inorg. Chem., 2007, 46: 9450.

[18]

Tao G P, Chen Q Y, Yang X, Zhao K D, Gao J. Colloids Surf. B: Biointer., 2011, 86: 106.

[19]

Xue J J, Chen Q Y, Xu X L, He S J, Wu P X, Qu L L, Zhu C Y. Inorg. Chem. Commun, 2014, 47: 168.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/