A synergistic strategy for nanoparticle/nanofiber composites towards p-nitrophenol catalytic hydrogenation

Wei Wang , Ke Wang , Jiaojie He , Xintong Zhang , Ce Wang , Zhiwei Zhao , Fuyi Cui

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 1012 -1017.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 1012 -1017. DOI: 10.1007/s40242-015-5155-6
Article

A synergistic strategy for nanoparticle/nanofiber composites towards p-nitrophenol catalytic hydrogenation

Author information +
History +
PDF

Abstract

Nanoparticle(NP)/nanofiber(NF) composites based on Ag/hydrostable-polyvinyl alcohol were fabricated by a green synergistic strategy via electrospinning. The electrospun NFs served as an in situ reducing agent for the metal salt precursors and a protecting agent for the resulting NPs. Additionallly, during the fomation of the NPs, the water-soluble NFs were in situ oxidized and catalyzed by the metal ions to achieve chemical crosslinking. This two-in-one process achieves polymer curing and metal nanoparticles reducing/protecting synergistically. It eliminates the usage of organic electrospinning solvents, conventional chemical reducing agents and stabilizers, as well as harmful chemical crosslinking agents during the whole process. By the absolutely green synergistic electrospinning, nanoparticle/nanofiber composites with super-hydrophilicity, good hydrostability, as well as uniform and thin particle sizes were obtained. They exhibited enhanced activities when used for catalytic hydrogenation of p-nitrophenol in water.

Keywords

Electrospinning / Supported nanoparticle / Nanofiber / Ag

Cite this article

Download citation ▾
Wei Wang, Ke Wang, Jiaojie He, Xintong Zhang, Ce Wang, Zhiwei Zhao, Fuyi Cui. A synergistic strategy for nanoparticle/nanofiber composites towards p-nitrophenol catalytic hydrogenation. Chemical Research in Chinese Universities, 2015, 31(6): 1012-1017 DOI:10.1007/s40242-015-5155-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Prieto G., Zecevíc J., Friedrich H., de Jong K. P., de Jongh P. E. Nat. Mater., 2013, 12: 34.

[2]

Wang Y. E., Cao S., Wu W. H., Wu M., Tang Y. W., Lu T. H. Chem. J. Chinese Universities, 2014, 35(11): 2455.

[3]

Fang Y., Sun G., Bi Y. H. Chem. Res. Chinese Universities, 2014, 30(5): 817.

[4]

Wang X., Dahubaiyila L. X. Chem. J. Chinese Universities, 2014, 35(2): 357.

[5]

Gu Y. P., Shen H. Z., Li L., Liu W. Q., Wang W. Q., Xu D. P. Chem. Res. Chinese Universities, 2014, 30(6): 879.

[6]

Wang Y. L., Tian D. X. Chem. Res. Chinese Universities, 2014, 30(2): 320.

[7]

Lei J., Wang W., Song M., Dong B., Li Z., Wang C., Li L. React. Funct. Polym., 2011, 71: 1071.

[8]

Yang F., Zheng W., Huang H. M., Li Z. Y., Zhang H. N., Wang W., Wang C. Chem. Res. Chinese Universities, 2010, 26(5): 847.

[9]

Wang W., Li Z., Xu X., Dong B., Zhang H., Wang Z., Wang C., Baughman R. H., Fang S. Small, 2011, 7: 597.

[10]

Xiao N., Wen Q., Liu Q. W., Yang Q. B., Li Y. X. Chem. Res. Chinese Universities, 2014, 30(6): 1057.

[11]

Lu X., Bian X., Nie G., Zhang C., Wang C. J. Mater. Chem., 2012, 22: 12723.

[12]

Li D., Xia Y. N. Adv. Mater., 2004, 16: 1151.

[13]

Kriha O., Becker M., Lehmann M., Kriha D., Krieglstein J., Yesef M., Schlecht S., Wehrspohn R. B., Wendorff J. H., Greiner A. Adv. Mater., 2007, 19: 2483.

[14]

Lu X., Wang C., Wei Y. Small, 2009, 5: 2349.

[15]

Li Z. Y., Huang H. M., Shang T. C., Yang F., Zheng W., Wang C., Manohar S. K. Nanotechnology, 2006, 17: 917.

[16]

Jin W. J., Lee H. K., Jeong E. H., Park W. H., Youk J. H. Macromol. Rapid Commun., 2005, 26: 1903.

[17]

Mahapatra A., Garg N., Nayak B. P., Mishra B. G., Hota G. J. App. Polym. Sci., 2012, 124: 1178.

[18]

Mahanta N., Valiyaveettil S. RSC Adv., 2012, 2: 11389.

[19]

Shi Q., Vitchuli N., Nowak J., Noar J., Caldwell J. M., Breidt F., Bourham M., McCord M., Zhang X. J. Mater. Chem., 2011, 21: 10330.

[20]

Huang H., Li Z., Wang W., Yang F., Li S., Wang C. e-Polymers, 2009, 9(1): 1765.

[21]

Ding B., Kim H. Y., Lee S. C., Lee D. R., Choi K. J. Fiber. Polym., 2002, 3: 73.

[22]

Ding B., Kim H. Y., Lee S. C., Shao C. L., Lee D. R., Park S. J., Kwag G. B., Choi K. J. J. Polym. Sci. Polym. Phys., 2002, 40: 1261.

[23]

Liu Y., Wang R., Ma H., Hsiao B. S., Chu B. Polymer, 2013, 54: 548.

[24]

Destaye A. G., Lin C. K., Lee C. K. ACS Appl. Mater. Interfaces, 2013, 5: 4745.

[25]

Gong J., Luo L., Yu S. H., Qian H., Fei L. J. Mater. Chem., 2006, 16: 101.

[26]

Luo L. B., Yu S. H., Qian H. S., Zhou T. J. Am. Chem. Soc., 2005, 127: 2822.

[27]

Wang W., Lu X., Li Z., Li X., Xu X., Lei J., Wang C., Baughman R. H., Fang S. Org. Electron., 2012, 13: 2319.

[28]

Yao L., Haas T. W., Guiseppi-Elie A., Bowlin G. L., Simpson D. G., Wnek G. E. Chem. Mater., 2003, 15: 1860.

[29]

Saquing C. D., Manasco J. L., Khan S. A. Small, 2009, 5: 944.

[30]

Thomas P. S., Guerbois J. P., Russell G. F., Briscoe B. J. J. Therm. Anal. Cal., 2001, 64: 501.

[31]

Han Y. Y., Wang W., Song M. X., Li Z., Wang C. Y., Sun J. H. Chem. J. Chinese Universities, 2012, 33(3): 604.

[32]

Gupta V. K., Atar N., Yola M. L. Üst.ündag. Z. Z., Uzun L. Wat. Res., 2014, 48: 217.

[33]

Zeng T., Ziegelgruber K. L., Chin Y. P., Arnold W. A. Environ. Sci. Technol., 2011, 45: 6814.

[34]

Zeng T., Chin Y. P., Arnold W. A. Environ. Sci. Technol., 2012, 46: 3177.

[35]

Rode C. V., Vaidya M. J., Jaganathan R., Chaudhari R. V. Chem. Eng. Sci., 2001, 56: 1299.

[36]

Wang R., Liu Y., Li B., Hsiao B., Chu B. J. Membrane. Sci., 2012, 392: 167.

[37]

Sato A., Wang R., Ma H., Hsiao B., Chu B. J. Electron Microsc., 2011, 60: 201.

[38]

Tong Y., Lu X., Sun W., Nie G., Yang L., Wang C. J. Power Sources, 2014, 261: 221.

[39]

Yang Q., Li D., Hong Y., Li Z., Wang C., Qiu S., Wei Y. Synth. Met., 2003, 137: 973.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/