Mechanisms and kinetics of reaction CHClBr+NO2

Lei Yang , Yuyu Liu , Xuemei Duan

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 1018 -1022.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (6) : 1018 -1022. DOI: 10.1007/s40242-015-5144-9
Article

Mechanisms and kinetics of reaction CHClBr+NO2

Author information +
History +
PDF

Abstract

The reaction CHClBr+NO2 was investigated via quantum chemical methods and kinetic calculations. The reaction mechanism on the singlet potential energy surface(PES) was considered by B3LYP method, and the energies were calculated at the CCSD(T) and CASPT2 levels of theory. The rate constants and the ratios of products were obtained by utilizing VTST and RRKM methods over wide temperature and pressure ranges. Our results indicate that carbon-to-nitrogen approach via a barrierless process is preferred in the initial association of CHClBr and NO2. The dominant product is BrNO+CHClO(P1), which agrees well with the experimental observation. P2(ClNO+CHBrO) and P3(HNO+CBrClO) may also have minor contributions to the reaction. The calculated overall rate constants are independent of pressure and consistent with the experimental data, which can be fitted with the following equation over the temperature range of 200—1500 K: k(T)=2.31×10–15 T 0.99exp(771/T). Compared with reaction CH2Br+NO2, reaction CHClBr+NO2

Keywords

Transition-state theory / Master equation simulation / Atmospheric chemistry / Combustion chemistry / Carbon- centered free radical

Cite this article

Download citation ▾
Lei Yang, Yuyu Liu, Xuemei Duan. Mechanisms and kinetics of reaction CHClBr+NO2. Chemical Research in Chinese Universities, 2015, 31(6): 1018-1022 DOI:10.1007/s40242-015-5144-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Penkett S. A., Jones B. M. R., Rycroft M. J., Simmons D. A. Nature, 1982, 318: 550.

[2]

Reifenhauser W., Heumann K. G. Atmos. Environ., 1992, 26A: 2905.

[3]

Cormier S. A., Lomnicki S., Backes W., Dellinger B. Environ. Health Perspect., 2006, 114: 810.

[4]

Violi A., D’Anna A., D’Alessio A. Chemosphere, 2001, 42: 463.

[5]

Rissanen M. P., Eskola A. J., Savina E., Timonen R. S. J. Phys. Chem. A, 2009, 113: 1753.

[6]

Miller J. A., Bowman C. T. Prog. Energy Combust. Sci., 1989, 15: 287.

[7]

Krysztofiak G., Catoire V., Poulet G., Marecal V., Pirre M., Louis F., Canneaux S., Josse B. Atmos. Environ., 2012, 59: 514.

[8]

Eskola A. J., Wojcik-Pastuszka D., Ratajczak E., Timonen R. S. J. Phys. Chem. A, 2006, 110: 12177.

[9]

Jia X. J., Pan X. M., Sun J. Y., Tang Y. Z., Sun H., Pan Y. R., Wang R. S. Theor. Chem. Account, 2009, 122: 207.

[10]

Forst W. Unimolecular Reaction, A Concise Introduction, 2003, Cambridge: Cambridge University Press.

[11]

Gilbert R. G., Smith S. C. Theory of Unimolecular and Rcombination Reaction, 1990, Oxford: Blackwell Scientific.

[12]

Holbrook K. A., Pilling M. J., Robertson S. H., Unimolecular Reaction, Wiley, Chichester, 1996

[13]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Redell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R. E., Stratmann O., Yazyev A. J., Austin R., Cammi C., Pomelli J. W., Ochterski R., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Cioslowski J., Fox D. J. Gaussian 09, Revision A.1, 2009, Wallingford CT: Gaussian Inc..

[14]

Werner H. J., Knowles P. J., Knizia G., Manby F. R. S. M., Celani P., Korona T., Lindh R., Mitrushenkov A., Rauhut G., Shamasundar K. R., Adler T. B., Amos R. D., Bernhardsson A., Berning A., Cooper D. L., Deegan M. J. O., Dobbyn A. J., Eckert F., Goll E., Hampel C., Hesselmann A., Hetzer G., Hrenar T., Jansen G., Köppl C., Liu Y., Lloyd A. W., Mata R. A., May A. J. M., Nicholas S. J., Meyer W., Mura M. E., Nicklass A., O’Neill D. P., Palmieri P., Pflüger K., Pitzer R., Reiher M., Shiozaki T., Stoll H., Stone A. J., Tarroni R., Thorsteinsson T., Wang M., Wolf A. MOLPRO, Version 2010.1, 2010, Cardiff: University College Cardiff Consultants Limited.

[15]

Becke A. D. J. Chem. Phys., 1993, 98: 1372.

[16]

Lee C., Yang W., Parr R. G. Phys. Rev. B, 1998, 37: 785.

[17]

Lee T. J., Scuseria G. Quantum-Mechanical Electronic Structure Calculations with Chemical Accuracy, 1995, Dordredcht: Kluwer Academic Publishers.

[18]

Knowles P. J., Hampel C., Werner H. J. J. Chem. Phys., 1993, 99: 5219.

[19]

Hratchian H. P. J. Chem. Theory Comput., 2012, 8: 5013.

[20]

Barker J. R., Ortiz N. F., Preses J. M., Lohr L. L., Maranzana A., Stimac P. J., Nguyen T. L., Dhilip Kumar T. J. MultiWell-2013, 2013, Ann Arbor, MI: University of Michigan.

[21]

Robinson P. J., Holbrook K. A. Unimolecular Reactions, 1972, New York: Wiley-Interscience.

[22]

Forst W. Theory of Unimolecular Reactions, 1973, New York: Academic Press.

[23]

Gilbert R. G., Smith S. C. Theory of Unimolecular and Recombination Reactions, 1990, Oxford: Blackwell Scientific.

[24]

Baer T., Hase W. L. Unimolecular Reaction Dynamics: Theory and Experiments, 1996, New York: Oxford University Press.

[25]

Herzberg G. Electronic Spectra and Electronic Structure of Polyatomic Molecules, 1966, New York: Van Nostrand.

[26]

Shimanouchi T. Tables of Molecular Vibrational Frequencies, 1972, Washington: National Bureau of Standards, 1.

[27]

Sverdlov L. M., Kovner M. A., Krainov E. P. Vibrational Spectra of Polyatomic Molecules, 1974, New York: Wiley.

[28]

Lee T. J., Taylor P. R. Int. J. Quantum Chem.: Quantum Chem. Symp., 1989, 23: 199.

[29]

Ogilivie J. F. J. Mol. Struct., 1976, 31: 407.

[30]

Huber K. P., Herzberg G. Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules, 1979, New York: Van Nostrand Reinhold.

[31]

Jacox M. E. J. Phys. Chem. Ref. Data, 1994, 461.

[32]

Hellwege K. H. Landolt-Bornstein: Group II: Atomic and Molecular Physics Volume 7: Structure Data of Free Polyatomic Molecules, 1976, Berlin: Springer-Verlag.

[33]

Yang L., Liu J. Y., Luo C., Barker J. R. J. Phys. Chem. A, 2014, 118: 3313.

[34]

Hippler H., Troe J., Wendelken H. J. J. Chem. Phys., 1983, 78: 6709.

[35]

Stiel L. I., Thodos G. J. Chem. Eng. Data, 1962, 7: 234.

[36]

Joback K. G., Reid R. C. Chem. Eng. Commun., 1987, 57: 233.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/