Dipyrrin-based complexes for solution-processed organic solar cells

Liyun Zou , Shuang Guan , Leijiao Li , Li Zhao

Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 801 -808.

PDF
Chemical Research in Chinese Universities ›› 2015, Vol. 31 ›› Issue (5) : 801 -808. DOI: 10.1007/s40242-015-5140-0
Article

Dipyrrin-based complexes for solution-processed organic solar cells

Author information +
History +
PDF

Abstract

Three dipyrrin-containing metal complexes and a boron dipyrromethene(BODIPY)-containing complex were designed and synthesized. The photophysical properties, electrochemical behaviours and photovoltaic performance were extensively investigated. Density functional theory calculations were also performed on those complexes. These complexes, together with electron-acceptor [6,6]-phenyl-C71-butyric acid methyl ester, were utilized for the fabrication of solution-processed bulk heterojunction solar cells as the electron-donor materials. The more efficient electron acceptor BODIPY segment renders a lower energy gap and a relatively better photovoltaic conversion efficiency of 0.58%. These results prove that BODIPY segment has a great potential for constructing efficient organic solar cell materials.

Keywords

Dipyrrin-metal / Boron dipyrromethene(BODIPY) / Solution-processed / Bulk-heterojunction / Organic solar cell

Cite this article

Download citation ▾
Liyun Zou, Shuang Guan, Leijiao Li, Li Zhao. Dipyrrin-based complexes for solution-processed organic solar cells. Chemical Research in Chinese Universities, 2015, 31(5): 801-808 DOI:10.1007/s40242-015-5140-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu G., Gao J., Hummelen J. C., Wudl F., Heeger A. J. Science, 1995, 270: 1789.

[2]

Turner J. A. Science, 1999, 285: 687.

[3]

Chen J., Cao Y. Accounts of Chemical Research, 2009, 42: 1709.

[4]

Cheng Y. J., Yang S. H., Hsu C. S. Chemical Reviews, 2009, 109: 5868.

[5]

Dennler G., Scharber M. C., Brabec C. J. Advanced Materials, 2009, 21: 1323.

[6]

Beaujuge P. M., Fréchet J. M. J. Journal of the American Chemical Society, 2011, 133: 20009.

[7]

Facchetti A. Chemistry of Materials, 2011, 23: 733.

[8]

Fitzner R., Mena-Osteritz E., Mishra A., Schulz G., Reinold E., Weil M., Körner C., Ziehlke H., Elschner C., Leo K., Riede M., Pfeiffer M., Uhrich C., Bäuerle P. Journal of the American Chemical Society, 2012, 134: 11064.

[9]

Li Y. Accounts of Chemical Research, 2012, 45: 723.

[10]

Lin Y., Li Y., Zhan X. Chemical Society Reviews, 2012, 41: 4245.

[11]

Mishra A., Bäuerle P. Angewandte Chemie International Edition, 2012, 51: 2020.

[12]

Walker B., Kim C., Nguyen T. Q. Chemistry of Materials, 2011, 23: 470.

[13]

He Z., Zhong C., Huang X., Wong W. Y., Wu H., Chen L., Su S., Cao Y. Advanced Materials, 2011, 23: 4636.

[14]

Bura T., Leclerc N., Fall S., Lévêque P., Heiser T., Retailleau P., Rihn S., Mirloup A., Ziessel R. Journal of the American Chemical Society, 2012, 134: 17404.

[15]

Coffin R. C., Peet J., Rogers J., Bazan G. C. Nat. Chem., 2009, 1: 657.

[16]

Hou J., Chen H. Y., Zhang S., Li G., Yang Y. Journal of the American Chemical Society, 2008, 130: 16144.

[17]

Lee O. P., Yiu A. T., Beaujuge P. M., Woo C. H., Holcombe T. W., Millstone J. E., Douglas J. D., Chen M. S., Fréchet J. M. J. Advanced Materials, 2011, 23: 5359.

[18]

Lin Y., Zhang Z. G., Li Y., Zhu D., Zhan X. Journal of Materials Chemistry A, 2013, 1: 5128.

[19]

Liu Y., Wan X., Wang F., Zhou J., Long G., Tian J., You J., Yang Y., Chen Y. Advanced Energy Materials, 2011, 1: 771.

[20]

Loser S., Bruns C. J., Miyauchi H., Ortiz R. P., Facchetti A., Stupp S. I., Marks T. J. Journal of the American Chemical Society, 2011, 133: 8142.

[21]

Mühlbacher D., Scharber M., Morana M., Zhu Z., Waller D., Gaudiana R., Brabec C. Advanced Materials, 2006, 18: 2884.

[22]

Peet J., Kim J. Y., Coates N. E., Ma W. L., Moses D., Heeger A. J., Bazan G. C. Nat. Mater., 2007, 6: 497.

[23]

Sahu D., Tsai C. H., Wei H. Y., Ho K. C., Chang F. C., Chu C. W. Journal of Materials Chemistry, 2012, 22: 7945.

[24]

Shang H., Fan H., Liu Y., Hu W., Li Y., Zhan X. Advanced Materials, 2011, 23: 1554.

[25]

Shi Q., Cheng P., Li Y., Zhan X. Advanced Energy Materials, 2012, 2: 63.

[26]

Sun Y., Welch G. C., Leong W. L., Takacs C. J., Bazan G. C., Heeger A. J. Nat. Mater., 2012, 11: 44.

[27]

Walker B., Tamayo A. B., Dang X. D., Zalar P., Seo J. H., Garcia A., Tantiwiwat M., Nguyen T. Q. Advanced Functional Materials, 2009, 19: 3063.

[28]

Zhou J., Wan X., Liu Y., Long G., Wang F., Li Z., Zuo Y., Li C., Chen Y. Chemistry of Materials, 2011, 23: 4666.

[29]

Zhou J., Wan X., Liu Y., Zuo Y., Li Z., He G., Long G., Ni W., Li C., Su X., Chen Y. Journal of the American Chemical Society, 2012, 134: 16345.

[30]

Kyaw A. K. K., Wang D. H., Gupta V., Leong W. L., Ke L., Bazan G. C., Heeger A. J. ACS Nano, 2013, 7: 4569.

[31]

Fan H., Shang H., Li Y., Zhan X. Applied Physics Letters, 2010, 97: 13330.

[32]

Li W., Du C., Li F., Zhou Y., Fahlman M., Bo Z., Zhang F. Chemistry of Materials, 2009, 21: 5327.

[33]

Mikroyannidis J. A., Stylianakis M. M., Balraju P., Suresh P., Sharma G. D. ACS Applied Materials & Interfaces, 2009, 1: 1711.

[34]

Ning Z., Tian H. Chemical Communications, 2009, 5483.

[35]

Roquet S., Cravino A., Leriche P., Alévêque O., Frère P., Roncali J. Journal of the American Chemical Society, 2006, 128: 3459.

[36]

Chen J., Wang M. Chem. Res. Chinese Universities, 2013, 29(3): 584.

[37]

Zhou H., Yang L., You W. Macromolecules, 2012, 45: 607.

[38]

Lin H. Y., Huang W. C., Chen Y. C., Chou H. H., Hsu C. Y., Lin J. T., Lin H. W. Chemical Communications, 2012, 48: 8913.

[39]

Rousseau T., Cravino A., Bura T., Ulrich G., Ziessel R., Roncali J. Chemical Communications, 2009, 1673.

[40]

Halper S. R., Malachowski M. R., Delaney H. M., Cohen S. M. Inorganic Chemistry, 2004, 43: 1242.

[41]

Hehre W. J., Ditchfield R., Pople J. A. J. Chem. Phys., 1972, 56: 2257.

[42]

Maeda H., Hasegawa M., Hashimoto T., Kakimoto T., Nishio S., Nakanishi T. Journal of the American Chemical Society, 2006, 128: 10024.

[43]

Sutton J. M., Rogerson E., Wilson C. J., Sparke A. E., Archibald S. J., Boyle R. W. Chemical Communications, 2004, 1328.

[44]

Halper S. R., Cohen S. M. Angewandte Chemie International Edition, 2004, 43: 2385.

[45]

Murphy D. L., Malachowski M. R., Campana C. F., Cohen S. M. Chemical Communications, 2005, 5506.

[46]

Becke A. D. J. Chem. Phys., 1993, 98: 5648.

[47]

Lee C., Yang W., Parr R. G. Physical Review B, 1988, 37: 785.

[48]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. J.r., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J., Brothers E. N., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam N. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas, Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, 2009, Wallingford CT: Gaussian Inc..

[49]

Hay P. J., Wadt W. R. J. Chem. Phys., 1985, 82: 299.

[50]

Ditchfield R., Hehre W. J., Pople J. A. J. Chem. Phys., 1971, 54: 724.

[51]

Thompson B. C., Kim Y. G., Reynolds J. R. Macromolecules, 2005, 38: 5359.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/